IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i4p407-d535123.html
   My bibliography  Save this article

Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland

Author

Listed:
  • Chenchen Ren

    (Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

  • Guoyu Ren

    (Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
    Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China)

  • Panfeng Zhang

    (Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
    School of Tourism and Geographical Sciences, Jilin Normal University, Siping 136000, China)

  • Suonam Kealdrup Tysa

    (Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

  • Yun Qin

    (Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

Abstract

The causes of the pan-evaporation decline have been debated, and few researches have been carried out on the possible effect of local land use and land cover change on the regional pan-observation data series. In this paper, the urbanization effect on the estimate of pan-evaporation trends over 1961–2017 was examined for the data series of 331 urban stations, applying a previously developed dataset of the reference stations, in seven large river basins of the China mainland. The trends of pan-evaporation difference series (transformed to anomaly percentage) between urban stations and reference stations were negative and statistically significant in all of the basins, indicating that urbanization significantly reduced the pan-evaporation. The urbanization-induced trend in the whole study region was −2.54%/decade for the urban stations. Except for the Yellow River Basin and the upper Yangtze River Basin, the urbanization effects in the other five large river basins of the country are all significant, with the mid and low reaches of the Yangtze River and the Songhua River registering the largest urbanization effects of −4.08%/decade and −4.06%/decade, respectively. Since the trends of regional average series for reference stations across half of the river basins are not statistically significant, the urbanization effect is a dominant factor for the observed decline in pan-evaporation. This finding would deepen our understanding of the regional and basin-wide change in pan-evaporation observed over the last decades.

Suggested Citation

  • Chenchen Ren & Guoyu Ren & Panfeng Zhang & Suonam Kealdrup Tysa & Yun Qin, 2021. "Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland," Land, MDPI, vol. 10(4), pages 1-11, April.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:4:p:407-:d:535123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/4/407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/4/407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. Brutsaert & M. B. Parlange, 1998. "Hydrologic cycle explains the evaporation paradox," Nature, Nature, vol. 396(6706), pages 30-30, November.
    2. Ying Sun & Xuebin Zhang & Guoyu Ren & Francis W. Zwiers & Ting Hu, 2016. "Contribution of urbanization to warming in China," Nature Climate Change, Nature, vol. 6(7), pages 706-709, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    2. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    4. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Hongyu Du & Fengqi Zhou & Chunlan Li & Wenbo Cai & Hong Jiang & Yongli Cai, 2020. "Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization, a Case Study of Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    6. Zhuangzhi Sun & Chuanlong Han & Shouwei Gao & Zhaoxin Li & Mingxing Jing & Haipeng Yu & Zuankai Wang, 2022. "Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Beáta Novotná & Vladimír Cviklovič & Branislav Chvíla & Martin Minárik, 2025. "Application of Developing Artificial Intelligence (AI) Techniques to Model Pan Evaporation Trends in Slovak River Sub-Basins," Sustainability, MDPI, vol. 17(2), pages 1-28, January.
    8. Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
    9. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    10. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    11. Chu Li & Jinming Yan & Ze Xu, 2021. "How Does New-Type Urbanization Affect the Subjective Well-Being of Urban and Rural Residents? Evidence from 28 Provinces of China," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    12. Chen Yang & Qingming Zhan & Sihang Gao & Huimin Liu, 2019. "How Do the Multi-Temporal Centroid Trajectories of Urban Heat Island Correspond to Impervious Surface Changes: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 16(20), pages 1-21, October.
    13. Amir AghaKouchak & Nasrin Nasrollahi, 2010. "Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1229-1249, April.
    14. Xiaoyong Li & Wenhui Kuang & Fengyun Sun, 2020. "Identifying Urban Flood Regulation Priority Areas in Beijing Based on an Ecosystem Services Approach," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    15. Fan Wang & Meng Gao & Cheng Liu & Ran Zhao & Michael B. McElroy, 2024. "Uniformly elevated future heat stress in China driven by spatially heterogeneous water vapor changes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Guanjin Zhang & Ling Quan, 2024. "Impact of Habitat Quality Changes on Regional Thermal Environment: A Case Study in Anhui Province, China," Sustainability, MDPI, vol. 16(19), pages 1-18, October.
    17. Jianwei Gao & Haiting Han & Shidong Ge, 2023. "Carbon-Saving Potential of Urban Parks in the Central Plains City: A High Spatial Resolution Study Using a Forest City, Shangqiu, China, as a Lens," Land, MDPI, vol. 12(7), pages 1-19, July.
    18. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    19. Alberto Vesperoni & Paul Schweinzer, 2023. "A threshold model of urban development," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 891-924, September.
    20. Cong Zhang & Xiaojun Yao & Lina Xiu & Huian Jin & Juan Cao, 2024. "Spatial and Temporal Dynamics of Ecological Parameters in Various Land Use Types in China during the First 20 Years of the 21st Century," Land, MDPI, vol. 13(5), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:4:p:407-:d:535123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.