IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i5p585-d1385035.html
   My bibliography  Save this article

Have Agricultural Land-Use Carbon Emissions in China Peaked? An Analysis Based on Decoupling Theory and Spatial EKC Model

Author

Listed:
  • Haoyue Wu

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
    These authors contributed equally to this work.)

  • Bangwen Ding

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
    These authors contributed equally to this work.)

  • Lu Liu

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Lei Zhou

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Yue Meng

    (College of Business and Tourism, Sichuan Agricultural University, Chengdu 611830, China)

  • Xiangjiang Zheng

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract

Assessing the emission-peaking process of agricultural land use provides valuable insights for mitigating global warming. This study calculated agricultural land-use carbon emissions (ALUCEs) in China from 2000 to 2020 and explored the peaking process based on quantitative criteria. Further, we applied the Tapio decoupling index and environmental Kuznets curve (EKC) model to discuss the robustness of the peaking process. The main conclusions are as follows: (1) From 2000 to 2020, China’s average ALUCEs were 368.1 Mt C-eq (1349.7 CO 2 -eq), peaking at 396.9 Mt C-eq (1455.3 Mt CO 2 -eq) in 2015 before plateauing. Emissions from agricultural materials and soil management had entered the declining period, while those from rice cultivation were in the peaking period, those from straw burning were still rising, and those from livestock breeding remained at the plateauing phase. (2) The provinces of Beijing, Tianjin, and nine others saw a decline in ALUCEs, while Hainan, Guizhou, and another nine provinces observed plateauing, and Ningxia, Qinghai, and six other provinces experienced peaking. (3) Decoupling analysis confirmed that emission-peaking states remained stable even with agricultural growth. Instead of an inverted U-shaped relationship, we found an N-shaped relationship between ALUCEs and agricultural GDP. The spatial EKC model indicated that the peaking process had spillover effects between provinces. It is recommended that China accelerate ALUCE mitigation based on the source and phase of emissions, considering the peaking process and magnitude.

Suggested Citation

  • Haoyue Wu & Bangwen Ding & Lu Liu & Lei Zhou & Yue Meng & Xiangjiang Zheng, 2024. "Have Agricultural Land-Use Carbon Emissions in China Peaked? An Analysis Based on Decoupling Theory and Spatial EKC Model," Land, MDPI, vol. 13(5), pages 1-20, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:585-:d:1385035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/5/585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/5/585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinyu Han & Jiansheng Qu & Dai Wang & Tek Narayan Maraseni, 2023. "Accounting for and Comparison of Greenhouse Gas (GHG) Emissions between Crop and Livestock Sectors in China," Land, MDPI, vol. 12(9), pages 1-18, September.
    2. Timothy D. Searchinger & Stefan Wirsenius & Tim Beringer & Patrice Dumas, 2018. "Assessing the efficiency of changes in land use for mitigating climate change," Nature, Nature, vol. 564(7735), pages 249-253, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrik B. Møller & Peter Sørensen & Jørgen E. Olesen & Søren O. Petersen & Tavs Nyord & Sven G. Sommer, 2022. "Agricultural Biogas Production—Climate and Environmental Impacts," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    2. Sophie Saget & Marcela Costa & David Styles & Mike Williams, 2021. "Does Circular Reuse of Chickpea Cooking Water to Produce Vegan Mayonnaise Reduce Environmental Impact Compared with Egg Mayonnaise?," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    3. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    4. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    5. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    6. Jonathan E. Barnsley & Chanjief Chandrakumar & Carlos Gonzalez-Fischer & Paul E. Eme & Bridget E. P. Bourke & Nick W. Smith & Lakshmi A. Dave & Warren C. McNabb & Harry Clark & David J. Frame & John L, 2021. "Lifetime Climate Impacts of Diet Transitions: A Novel Climate Change Accounting Perspective," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    7. Adam C. Castonguay & Stephen Polasky & Matthew H. Holden & Mario Herrero & Daniel Mason-D’Croz & Cecile Godde & Jinfeng Chang & James Gerber & G. Bradd Witt & Edward T. Game & Brett A. Bryan & Brendan, 2023. "Navigating sustainability trade-offs in global beef production," Nature Sustainability, Nature, vol. 6(3), pages 284-294, March.
    8. Yang Liu & Yang Yang & Zhijie Wang & Shaoshan An, 2022. "Quantifying Water Provision Service Supply, Demand, and Spatial Flow in the Yellow River Basin," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    9. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    10. Che, Yuyuan & Feng, Hongli & Hennessy, David, 2021. "Assessing Peer Effects and Subsidy Impacts in Technology Adoption: Application to Grazing Management Choices with Farm Survey Data," 2021 Conference, August 17-31, 2021, Virtual 315123, International Association of Agricultural Economists.
    11. Bellassen Valentin & Drut Marion & Diallo Abdoul & Antonioli Federico & Donati Michele & Brečić Ružica & Ferrer-Pérez Hugo & Gauvrit Lisa & Hoang Viet & Nguyen An & Knutsen Steinnes Kamilla & Vittersø, 2021. "The Carbon and Land Footprint of Certified Food Products," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 19(2), pages 113-126, December.
    12. Xiuyu Huang & Ying Wang & Wanyi Liang & Zhaojun Wang & Xiao Zhou & Qinqiang Yan, 2023. "Spatial–Temporal Evolution and Driving Factors of the Low–Carbon Transition of Farmland Use in Coastal Areas of Guangdong Province," Land, MDPI, vol. 12(5), pages 1-23, May.
    13. Ahmed Abouaiana & Alessandra Battisti, 2022. "Multifunction Land Use to Promote Energy Communities in Mediterranean Region: Cases of Egypt and Italy," Land, MDPI, vol. 11(5), pages 1-24, April.
    14. Ruifeng Liu & Zhifeng Gao & Rodolfo M. Nayga & Lijia Shi & Les Oxley & Hengyun Ma, 2020. "Can “green food” certification achieve both sustainable practices and economic benefits in a transitional economy? The case of kiwifruit growers in Henan Province, China," Agribusiness, John Wiley & Sons, Ltd., vol. 36(4), pages 675-692, October.
    15. Berazneva, Julia & Woolf, Dominic & Lee, David R., 2021. "Local lignocellulosic biofuel and biochar co-production in Sub-Saharan Africa: The role of feedstock provision in economic viability," Energy Economics, Elsevier, vol. 93(C).
    16. Nicolas Treich, 2021. "Cultured Meat: Promises and Challenges," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(1), pages 33-61, May.
    17. Anna Kuczuk & Katarzyna Widera, 2021. "A Greater Share of Organic Agriculture in Relation to Food Security Resulting from the Energy Demand Obtained from Food—Scenarios for Poland until 2030," Energies, MDPI, vol. 14(21), pages 1-19, October.
    18. Wang, Han & Lu, Siying & Lu, Bo & Nie, Xin, 2021. "Overt and covert: The relationship between the transfer of land development rights and carbon emissions," Land Use Policy, Elsevier, vol. 108(C).
    19. Richard Twine, 2021. "Emissions from Animal Agriculture—16.5% Is the New Minimum Figure," Sustainability, MDPI, vol. 13(11), pages 1-8, June.
    20. Patrice Dumas & Stefan Wirsenius & Tim Searchinger & Nadine Andrieu & Adrien Vogt-Schilb, 2022. "Options to achieve net - zero emissions from agriculture and land use changes in Latin America and the Caribbean," Post-Print halshs-03760573, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:585-:d:1385035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.