IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i3p348-d1353617.html
   My bibliography  Save this article

The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China

Author

Listed:
  • Wenting Huang

    (School of Public Policy and Management, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China)

  • Long Guo

    (Land Expropriation and Survey Center of Suqian City, Hongzehu Road 793, Suqian 223800, China)

  • Ting Zhang

    (School of Public Policy and Management, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China)

  • Ting Chen

    (Land Expropriation and Survey Center of Suqian City, Hongzehu Road 793, Suqian 223800, China)

  • Longqian Chen

    (School of Public Policy and Management, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China)

  • Long Li

    (School of Public Policy and Management, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
    Department of Geography, Earth System Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

  • Xundi Zhang

    (School of Public Policy and Management, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China)

Abstract

The carbon storage of terrestrial ecosystems plays a crucial role in mitigating climate change, and the transformation of territorial space has a significant impact on the carbon cycle of a country’s terrestrial ecosystems. Therefore, evaluating the impact of space transformation on carbon storage is essential for enhancing regional carbon storage potential and reducing carbon emissions. We use the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to analyze the dynamic changes in territorial spatial transformation and carbon storage from 2000 to 2020 in Suqian, as well as their relationship. On this basis, the optimization strategy and specific path for improving territorial space carbon storage capacity were determined. The results show the following: that (1) from 2000 to 2020, territorial spatial transformation in Suqian was dramatic, with the most significant changes occurring between 2005 and 2010. The scale of mutual transformation between agricultural production space and urban–rural construction space was the largest. (2) Carbon storage gradually decreased in Suqian City, with a total reduction of 1.23 × 10 6 tons over 20 years and an annual decrease of 1.46%. The carbon density of forested space was significantly higher than that of other spaces. The conversion of agricultural production space and forestland space to urban–rural construction space was the main factor driving a decrease in carbon storage. (3) Territorial spatial transformation is a spatial manifestation of the evolution of human–land relationships. Regulating the function, scale, structure and layout of territorial space as a whole and implementing differentiated management of specific space will be beneficial to optimize carbon storage in Suqian.

Suggested Citation

  • Wenting Huang & Long Guo & Ting Zhang & Ting Chen & Longqian Chen & Long Li & Xundi Zhang, 2024. "The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China," Land, MDPI, vol. 13(3), pages 1-22, March.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:348-:d:1353617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/3/348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/3/348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konarska, Keri M. & Sutton, Paul C. & Castellon, Michael, 2002. "Evaluating scale dependence of ecosystem service valuation: a comparison of NOAA-AVHRR and Landsat TM datasets," Ecological Economics, Elsevier, vol. 41(3), pages 491-507, June.
    2. Zhouling Shao & Chunyan Chen & Yuanli Liu & Jie Cao & Guitang Liao & Zhengyu Lin, 2023. "Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China," Land, MDPI, vol. 12(8), pages 1-17, August.
    3. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    4. Christian P. Giardina & Michael G. Ryan, 2000. "Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature," Nature, Nature, vol. 404(6780), pages 858-861, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaqi Kang & Linlin Zhang & Qingyan Meng & Hantian Wu & Junyan Hou & Jing Pan & Jiahao Wu, 2025. "Land Use and Carbon Storage Evolution Under Multiple Scenarios: A Spatiotemporal Analysis of Beijing Using the PLUS-InVEST Model," Sustainability, MDPI, vol. 17(4), pages 1-21, February.
    2. Ding, Helen & Nunes, Paulo A.L.D. & Teelucksingh, Sonja S., 2010. "European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts," Sustainable Development Papers 59397, Fondazione Eni Enrico Mattei (FEEM).
    3. Doll, Christopher N.H. & Muller, Jan-Peter & Morley, Jeremy G., 2006. "Mapping regional economic activity from night-time light satellite imagery," Ecological Economics, Elsevier, vol. 57(1), pages 75-92, April.
    4. Xuanmiao Peng & Xiaoai Dai & Ryan Shi & Yujian Zheng & Xinyue Liu & Yuhe Xiao & Weile Li & Yang Zhang & Jue Wang & Huan Huang, 2024. "Investigating the Effects of Mining on Ecosystem Services in Panzhihua City: A Multi-Scenario Analysis," Land, MDPI, vol. 13(6), pages 1-25, June.
    5. Hong Shi & Ji Yang & Qijuan Liu & Taohong Li & Ning Chris Chen, 2024. "Impacts of Climate and Land-Use Change on Fraction Vegetation Coverage Based on PLUS-Dimidiate Pixel Model," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    6. Kun Zhang & Yu Wang & Ali Mamtimin & Yongqiang Liu & Lifang Zhang & Jiacheng Gao & Ailiyaer Aihaiti & Cong Wen & Meiqi Song & Fan Yang & Chenglong Zhou & Wen Huo, 2024. "Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China," Land, MDPI, vol. 13(5), pages 1-23, April.
    7. Muhammad Waseem Rasheed & Jialiang Tang & Abid Sarwar & Suraj Shah & Naeem Saddique & Muhammad Usman Khan & Muhammad Imran Khan & Shah Nawaz & Redmond R. Shamshiri & Marjan Aziz & Muhammad Sultan, 2022. "Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    8. Post, Joachim & Krysanova, Valentina & Suckow, Felicitas & Mirschel, Wilfried & Rogasik, Jutta & Merbach, Ines, 2007. "Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins," Ecological Modelling, Elsevier, vol. 206(1), pages 93-109.
    9. Jan Philipp Schägner & Luke Brander & Joachim Maes & Volkmar Hartje, 2012. "Mapping Ecosystem Services’ Values: Current Practice and Future Prospects," Working Papers 2012.59, Fondazione Eni Enrico Mattei.
    10. Shu An & Yifang Duan & Dengshuai Chen & Xiaoman Wu, 2024. "Spatiotemporal Evolution and Drivers of Carbon Storage from a Sustainable Development Perspective: A Case Study of the Region along the Middle and Lower Yellow River, China," Sustainability, MDPI, vol. 16(15), pages 1-19, July.
    11. Yang, Wu & Chang, Jie & Xu, Bin & Peng, Changhui & Ge, Ying, 2008. "Ecosystem service value assessment for constructed wetlands: A case study in Hangzhou, China," Ecological Economics, Elsevier, vol. 68(1-2), pages 116-125, December.
    12. Jin, Xuanyi & Jiang, Wenrui & Fang, Delin & Wang, Saige & Chen, Bin, 2024. "Evaluation and driving force analysis of the water-energy‑carbon nexus in agricultural trade for RCEP countries," Applied Energy, Elsevier, vol. 353(PB).
    13. Sutton, Paul C. & Costanza, Robert, 2002. "Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation," Ecological Economics, Elsevier, vol. 41(3), pages 509-527, June.
    14. Jing Liu & Yongping Li & Gordon Huang & Yujin Yang & Xiaojie Wu, 2021. "A Factorial Ecological-Extended Physical Input-Output Model for Identifying Optimal Urban Solid Waste Path in Fujian Province, China," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    15. Jiashan Yu & Jun Zhou & Jing Zhao & Ran Chen & Xueqi Yao & Xiaomin Luo & Sijia Jiang & Ziyang Wang, 2023. "Agroecological Risk Assessment Based on Coupling of Water and Land Resources—A Case of Heihe River Basin," Land, MDPI, vol. 12(4), pages 1-16, March.
    16. Kolosz, B.W. & Athanasiadis, I.N. & Cadisch, G. & Dawson, T.P. & Giupponi, C. & Honzák, M. & Martinez-Lopez, J. & Marvuglia, A. & Mojtahed, V. & Ogutu, K.B.Z. & Van Delden, H. & Villa, F. & Balbi, S., 2018. "Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land," Ecosystem Services, Elsevier, vol. 33(PA), pages 29-39.
    17. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    18. Yingxue Li & Zhaoshun Liu & Shujie Li & Xiang Li, 2022. "Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model," Land, MDPI, vol. 11(5), pages 1-17, April.
    19. Liu, Yong & Li, Jinchang & Zhang, Hong, 2012. "An ecosystem service valuation of land use change in Taiyuan City, China," Ecological Modelling, Elsevier, vol. 225(C), pages 127-132.
    20. Luo, Haizhi & Li, Yingyue & Gao, Xinyu & Meng, Xiangzhao & Yang, Xiaohu & Yan, Jinyue, 2023. "Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China," Applied Energy, Elsevier, vol. 348(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:348-:d:1353617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.