IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i2p226-d1337646.html
   My bibliography  Save this article

Can Green Infrastructure Investment Reduce Urban Carbon Emissions:Empirical Evidence from China

Author

Listed:
  • Kunpeng Ai

    (School of Political Science and Public Administration, Henan Normal University, Xinxiang 453007, China)

  • Xiangwu Yan

    (School of Economics, Zhejiang University of Finance & Economics, Hangzhou 310018, China)

Abstract

Green infrastructure (GI) plays a pivotal role in contemporary urban infrastructure. Green infrastructure investment (GII) provides a fresh perspective for controlling urban carbon emissions in the context of global climate change. Based on theoretical analysis, we employed panel data from Chinese cities to examine the effects and operating mechanisms of GII on urban carbon emissions. The research reveals that the incremental GII can notably decrease urban carbon emissions, and various robustness tests and endogeneity checks corroborate this finding. However, when considering the cumulative effect, the GII stocks do not appear to influence urban carbon emissions; GII mitigates urban carbon emissions by drawing in pollution control talents, improving the efficiency of household waste treatment, increasing urban green spaces, and heightening public attention to the environment. Relative to cities in the central-western region, northern cities, smaller cities, resource-based cities, smart pilot cities, and cities with a lesser environmental emphasis, GII is more effective in curbing carbon emissions in eastern cities, southern cities, larger cities, non-resource-intensive cities, cities not in the smart pilot initiative, and cities with a stronger environmental focus. This research enhances the understanding of GI’s environmental outcomes and the determinants of urban carbon emissions from an investment viewpoint. It also dissects the four operative mechanisms through which GII lowers urban carbon emissions, offering a novel interpretation of GII for the variance in carbon emission levels across cities with diverse traits.

Suggested Citation

  • Kunpeng Ai & Xiangwu Yan, 2024. "Can Green Infrastructure Investment Reduce Urban Carbon Emissions:Empirical Evidence from China," Land, MDPI, vol. 13(2), pages 1-18, February.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:226-:d:1337646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/2/226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/2/226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    2. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinchun Zhang & Dong Liang & Shuo Zhang, 2025. "The Impact of Digital–Financial Dual Pilot Policy on Carbon Emission Efficiency: Evidence from Chinese Cities," Land, MDPI, vol. 14(4), pages 1-31, March.
    2. Ana Kadić & Biljana Maljković & Katarina Rogulj & Jelena Kilić Pamuković, 2025. "Green Infrastructure’s Role in Climate Change Adaptation: Summarizing the Existing Research in the Most Benefited Policy Sectors," Sustainability, MDPI, vol. 17(9), pages 1-26, May.
    3. Yingying Jiang & Sacha Menz, 2025. "Green Infrastructure and Integrated Optimisation Approach Towards Urban Sustainability: Case Study in Altstetten-Albisrieden, Zurich," Land, MDPI, vol. 14(4), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Dan & Zhu, Yanjin, 2024. "The impact of economic uncertainty on carbon emission: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Hui Wang & Guangxing Ji & Jisheng Xia, 2019. "Analysis of Regional Differences in Energy-Related PM 2.5 Emissions in China: Influencing Factors and Mitigation Countermeasures," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    3. Lina Peng & Ning Sun & Zhide Jiang & Zhenyu Yan & Jiapeng Xu, 2025. "The impact of urban–rural integration on carbon emissions of rural household energy consumption: evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 1799-1827, January.
    4. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    5. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    6. Cong Xu & Liying Shen & Tso-Yu Lin, 2025. "Research on Evolutionary Path of Land Development System Towards Carbon Neutrality," Sustainability, MDPI, vol. 17(3), pages 1-27, January.
    7. Gudipudi, Ramana & Rybski, Diego & Lüdeke, Matthias K.B. & Zhou, Bin & Liu, Zhu & Kropp, Jürgen P., 2019. "The efficient, the intensive, and the productive: Insights from urban Kaya scaling," Applied Energy, Elsevier, vol. 236(C), pages 155-162.
    8. Huijie Yan & Mateo Cordier & Takuro Uehara, 2024. "Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    9. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    10. Jinhua Shao & Brayan Tillaguango & Rafael Alvarado & Santiago Ochoa-Moreno & Johanna Alvarado-Espejo, 2021. "Environmental Impact of the Shadow Economy, Globalisation, Trade and Market Size: Evidence Using Linear and Non-Linear Methods," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    11. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Characterizing the Influences of Economic Development, Energy Consumption, Urbanization, Industrialization, and Vehicles Amount on PM 2.5 Concentrations of China," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    12. Yi Xiao & Yuantao Liao & Zhe Li & Zhuojun Li & Shaojian Wang, 2023. "Impacts of Land Urbanization on CO 2 Emissions: Policy Implications Based on Developmental Stages," Land, MDPI, vol. 12(10), pages 1-15, October.
    13. Shanshan Wang & Tianhao Zhao & Haitao Zheng & Jie Hu, 2017. "The STIRPAT Analysis on Carbon Emission in Chinese Cities: An Asymmetric Laplace Distribution Mixture Model," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    14. Luo, Keyu & Wang, Qi & Liang, Chao, 2022. "The way to break the resource curse: New evidence from China," Resources Policy, Elsevier, vol. 79(C).
    15. Kai Zhu & Manya Tu & Yingcheng Li, 2022. "Did Polycentric and Compact Structure Reduce Carbon Emissions? A Spatial Panel Data Analysis of 286 Chinese Cities from 2002 to 2019," Land, MDPI, vol. 11(2), pages 1-15, January.
    16. Sheeraz Iqbal & Salman Habib & Muhammad Ali & Aqib Shafiq & Anis ur Rehman & Emad M. Ahmed & Tahir Khurshaid & Salah Kamel, 2022. "The Impact of V2G Charging/Discharging Strategy on the Microgrid Environment Considering Stochastic Methods," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    17. Elvis D. Achuo & Pilag B.C. Kakeu & Simplice A. Asongu, 2023. "Financial development, human capital and energy transition: A global comparative analysis," Working Papers of the African Governance and Development Institute. 23/005, African Governance and Development Institute..
    18. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    19. Jian Xue & Zeeshan Rasool & Raima Nazar & Ahmad Imran Khan & Shaukat Hussain Bhatti & Sajid Ali, 2021. "Revisiting Natural Resources—Globalization-Environmental Quality Nexus: Fresh Insights from South Asian Countries," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    20. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:226-:d:1337646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.