IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1916-d1521224.html
   My bibliography  Save this article

Green Infrastructure Mapping in Almeria Province (Spain) Using Geographical Information Systems and Multi-Criteria Evaluation

Author

Listed:
  • Álvaro Navas González

    (Department of Geology, Geography and Environment, University of Alcalá, Colegios 2, 28801 Alcalá de Henares, Spain)

  • Richard J. Hewitt

    (Institute of Economics, Geography, and Demography, Spanish Research Council (IEGD-CSIC), Albasanz, 26-28, 28037 Madrid, Spain)

  • Javier Martínez-Vega

    (Institute of Economics, Geography, and Demography, Spanish Research Council (IEGD-CSIC), Albasanz, 26-28, 28037 Madrid, Spain)

Abstract

Green infrastructure (GI) is increasingly prioritised in landscape policy and planning due to its potential to benefit ecosystems and enhance wildlife conservation. However, due to the uneven distribution of protected areas (PAs) and the fragmentation of habitats more generally, multi-level policy strategies are needed to create an integrated GI network bridging national, regional and local scales. In the province of Almeria, southeastern Spain, protected areas are mainly threatened by two land use/land cover changes. On the one hand, there is the advance of intensive greenhouse agriculture, which, between 1984 and 2007, increased in surface area by more than 58%. On the other hand, there is the growth of artificial surfaces, including urban areas (+64%), construction sites (+194%) and road infrastructures (+135%). To address this challenge, we present a proposal for green infrastructure deployment in the province of Almeria. We combine Geographic Information Systems (GISs) and multi-criteria evaluation (MCE) techniques to identify and evaluate suitability for key elements to be included in GI in two key ways. First, we identify the most suitable areas to form part of the GI in order to address vulnerability to degradation and fragmentation. Second, we propose 15 ecological corridors connecting the 35 protected areas of the province that act as core areas. The proposed GI network would extend along the western coast of the province and occupy the valleys of the main rivers. The river Almanzora plays a leading role. Due to its remoteness from the coast and its climatic conditions, it has not attracted intensive greenhouse agriculture and urban development, the main drivers of the transformation and fragmentation of traditional land uses. Around 50% of the area occupied by the proposed corridors would be located in places of medium and high suitability for the movement of species between core areas.

Suggested Citation

  • Álvaro Navas González & Richard J. Hewitt & Javier Martínez-Vega, 2024. "Green Infrastructure Mapping in Almeria Province (Spain) Using Geographical Information Systems and Multi-Criteria Evaluation," Land, MDPI, vol. 13(11), pages 1-24, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1916-:d:1521224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Troy, Austin & Wilson, Matthew A., 2006. "Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer," Ecological Economics, Elsevier, vol. 60(2), pages 435-449, December.
    2. Stephanie L. Barr & Christopher J. Lemieux, 2021. "Assessing organizational readiness to adapt to climate change in a regional protected areas context: lessons learned from Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(8), pages 1-21, December.
    3. Di Zhou & Wei Song, 2021. "Identifying Ecological Corridors and Networks in Mountainous Areas," IJERPH, MDPI, vol. 18(9), pages 1-19, April.
    4. Martín, Belén & Ortega, Emilio & de Isidro, Ágata & Iglesias-Merchan, Carlos, 2021. "Improvements in high-speed rail network environmental evaluation and planning: An assessment of accessibility gains and landscape connectivity costs in Spain," Land Use Policy, Elsevier, vol. 103(C).
    5. Lara Vilar & Israel Gómez & Javier Martínez-Vega & Pilar Echavarría & David Riaño & M Pilar Martín, 2016. "Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    6. José A. Aznar-Sánchez & Luis J. Belmonte-Ureña & Juan F. Velasco-Muñoz & Diego L. Valera, 2019. "Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain," IJERPH, MDPI, vol. 16(5), pages 1-16, March.
    7. Doko, Tomoko & Fukui, Hiromichi & Kooiman, Andre & Toxopeus, A.G. & Ichinose, Tomohiro & Chen, Wenbo & Skidmore, A.K., 2011. "Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan," Ecological Modelling, Elsevier, vol. 222(3), pages 748-761.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyu Li & Aibo Jin & Weijie Zhuang & Hui Li, 2025. "Human–Nature Relationships in Country Parks at the Urban–Rural Fringe: A Case Study of the Huitian Region, Beijing," Land, MDPI, vol. 14(5), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    2. Qenani-Petrela, Eivis & Noel, Jay E. & Mastin, Thomas, 2007. "A Benefit Transfer Approach to the Estimation of Agro-Ecosystems Services Benefits: A Case Study of Kern County, California," Research Project Reports 121605, California Polytechnic State University, San Luis Obispo, California Institute for the Study of Specialty Crops.
    3. Frélichová, Jana & Vačkář, David & Pártl, Adam & Loučková, Blanka & Harmáčková, Zuzana V. & Lorencová, Eliška, 2014. "Integrated assessment of ecosystem services in the Czech Republic," Ecosystem Services, Elsevier, vol. 8(C), pages 110-117.
    4. Arturo Sanchez-Porras & María Guadalupe Tenorio-Arvide & Ricardo Darío Peña-Moreno & María Laura Sampedro-Rosas & Sonia Emilia Silva-Gómez, 2018. "Evaluation of the Potential Change to the Ecosystem Service Provision Due to Industrialization," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    5. Stephen Kankam & Adams Osman & Justice Nana Inkoom & Christine Fürst, 2022. "Implications of Spatio-Temporal Land Use/Cover Changes for Ecosystem Services Supply in the Coastal Landscapes of Southwestern Ghana, West Africa," Land, MDPI, vol. 11(9), pages 1-24, August.
    6. Houdet, Joël & Trommetter, Michel & Weber, Jacques, 2012. "Understanding changes in business strategies regarding biodiversity and ecosystem services," Ecological Economics, Elsevier, vol. 73(C), pages 37-46.
    7. Tianshu Liu & Xiangbin Peng & Junjie Li, 2024. "Evaluation of Ecological Sensitivity and Spatial Correlation Analysis of Landscape Patterns in Sanjiangyuan National Park," Sustainability, MDPI, vol. 16(13), pages 1-16, June.
    8. Yihe Huang & Shouyun Shen & Wenmin Hu & Yurou Li & Guo Li, 2022. "Construction of Cultural Heritage Tourism Corridor for the Dissemination of Historical Culture: A Case Study of Typical Mountainous Multi-Ethnic Area in China," Land, MDPI, vol. 12(1), pages 1-17, December.
    9. Kubiszewski, Ida & Costanza, Robert & Dorji, Lham & Thoennes, Philip & Tshering, Kuenga, 2013. "An initial estimate of the value of ecosystem services in Bhutan," Ecosystem Services, Elsevier, vol. 3(C), pages 11-21.
    10. Klimanova, O.A. & Bukvareva, E.N. & Yu, Kolbowsky E. & Illarionova, O.A., 2023. "Assessing ecosystem services in Russia: Case studies from four municipal districts," Land Use Policy, Elsevier, vol. 131(C).
    11. Andrea Ghermandi & John Agard & Paulo A. L. D. Nunes, 2018. "Applying Geographic Information Systems to ecosystem services valuation and mapping in Trinidad and Tobago," Letters in Spatial and Resource Sciences, Springer, vol. 11(3), pages 289-306, October.
    12. Jan Philipp Schägner & Luke Brander & Joachim Maes & Volkmar Hartje, 2012. "Mapping Ecosystem Services’ Values: Current Practice and Future Prospects," Working Papers 2012.59, Fondazione Eni Enrico Mattei.
    13. Damien Sinonmatohou Tiando & Shougeng Hu & Xin Fan & Muhammad Rashid Ali, 2021. "Tropical Coastal Land-Use and Land Cover Changes Impact on Ecosystem Service Value during Rapid Urbanization of Benin, West Africa," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    14. Chen, Nengwang & Li, Huancheng & Wang, Lihong, 2009. "A GIS-based approach for mapping direct use value of ecosystem services at a county scale: Management implications," Ecological Economics, Elsevier, vol. 68(11), pages 2768-2776, September.
    15. Abildtrup, Jens & Garcia, Serge & Olsen, Søren Bøye & Stenger, Anne, 2013. "Spatial preference heterogeneity in forest recreation," Ecological Economics, Elsevier, vol. 92(C), pages 67-77.
    16. Stephen Hynes & Daniel Norton & Nick Hanley, 2013. "Adjusting for Cultural Differences in International Benefit Transfer," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(4), pages 499-519, December.
    17. Moore, Rebecca & Williams, Tiffany & Rodriguez, Eduardo, 2011. "Valuing Ecosystem Services from Private Forests," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103717, Agricultural and Applied Economics Association.
    18. Meirui Li & Baolei Zhang & Xiaobo Zhang & Shumin Zhang & Le Yin, 2023. "Exploring Spatio-Temporal Variations of Ecological Risk in the Yellow River Ecological Economic Belt Based on an Improved Landscape Index Method," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    19. Shruti Lahoti & Mohamed Kefi & Ashish Lahoti & Osamu Saito, 2019. "Mapping Methodology of Public Urban Green Spaces Using GIS: An Example of Nagpur City, India," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    20. Xinmin Zhang & Ronald C Estoque & Hualin Xie & Yuji Murayama & Manjula Ranagalage, 2019. "Bibliometric analysis of highly cited articles on ecosystem services," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1916-:d:1521224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.