IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i9p1717-d1231860.html
   My bibliography  Save this article

Combined Application of Desulfurization Gypsum and Biochar for Improving Saline-Alkali Soils: A Strategy to Improve Newly Reclaimed Cropland in Coastal Mudflats

Author

Listed:
  • Peijun Wang

    (Research Center for Land Use and Ecological Security Governance in Mining Area, China University of Mining and Technology, Xuzhou 221116, China
    School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Qi Liu

    (College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Shenglong Fan

    (Innovation Center of Engineering Technology for Monitoring and Restoration of Ecological Fragile Areas in Southeast China of MNR, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    School of Public Administration and Law, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Jing Wang

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Shouguo Mu

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Chunbo Zhu

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

This study investigated the effects of combined (mixed) application of desulfurization gypsum and biochar on crop growth and soil properties in the saline-alkali soils of coastal mudflats through indoor pot experiments and eight experimental ameliorant treatments. Among them, CK was the control of newly reclaimed cropland in the study area with no added ameliorator, treatment A was desulfurization gypsum applied alone, and treatment F was biochar applied alone, while treatments B, C, D, and E were set as a combination of desulfurization gypsum and biochar treatments with different ratios, and treatment G was a local multi-year improved farmland soil with no added ameliorator. Additionally, an evaluation index system was established for evaluating the saline-alkali soil improvement in the newly reclaimed cropland. Finally, the improvement effect was evaluated by assessing soil physical and chemical indicators, as well as nutrient and crop growth indicators. Based on the results, the following conclusions were drawn: (1) Desulfurization gypsum and biochar significantly improved the soil physicochemical properties. Both single and mixed application of desulfurization gypsum significantly increased soil Ca 2+ , SO 4 2− , and Mg 2+ contents and significantly reduced soil pH, sodium adsorption ratio, and bulk density. Both single and mixed application of biochar significantly reduced soil bulk density and significantly increased water-soluble K + , field capacity (water-holding capacity), available phosphorus, available potassium, and organic matter contents. (2) Both single and mixed application of desulfurization gypsum and biochar demonstrated effectiveness in promoting crop growth, where the fresh weight, dry weight, plant height, and leaf area of peanut were higher than those of treatments CK and G. Treatment A (desulfurization gypsum 100 g/kg) was the most effective ameliorant treatment, in terms of improving the fresh and dry weight of peanut. Treatment C (desulfurization gypsum 75 g/kg, biochar 20 g/kg) had the most significant effect on peanut plant height and leaf area. (3) After 60 days of planting, the improvement effect of each treatment was ranked as C > A > E > B > D > F > G > CK. The treatments with a desulfurization gypsum–biochar combination and desulfurization gypsum alone had the best improvement effect, followed by the treatment with biochar alone.

Suggested Citation

  • Peijun Wang & Qi Liu & Shenglong Fan & Jing Wang & Shouguo Mu & Chunbo Zhu, 2023. "Combined Application of Desulfurization Gypsum and Biochar for Improving Saline-Alkali Soils: A Strategy to Improve Newly Reclaimed Cropland in Coastal Mudflats," Land, MDPI, vol. 12(9), pages 1-22, September.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1717-:d:1231860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/9/1717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/9/1717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akhtar, Saqib Saleem & Andersen, Mathias Neumann & Liu, Fulai, 2015. "Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress," Agricultural Water Management, Elsevier, vol. 158(C), pages 61-68.
    2. Nicholas J. Murray & Stuart R. Phinn & Michael DeWitt & Renata Ferrari & Renee Johnston & Mitchell B. Lyons & Nicholas Clinton & David Thau & Richard A. Fuller, 2019. "The global distribution and trajectory of tidal flats," Nature, Nature, vol. 565(7738), pages 222-225, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Wyzińska & Adam Kleofas Berbeć & Jerzy Grabiński, 2023. "Impact of Biochar Dose and Origin on Winter Wheat Grain Quality and Quantity," Agriculture, MDPI, vol. 14(1), pages 1-15, December.
    2. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.
    3. Chao Xu & Weibo Liu, 2021. "The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020," Geographies, MDPI, vol. 1(3), pages 1-23, November.
    4. María Alcívar & Andrés Zurita-Silva & Marco Sandoval & Cristina Muñoz & Mauricio Schoebitz, 2018. "Reclamation of Saline–Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    5. Xiao, Hui & Chadès, Iadine & Hill, Narelle & Murray, Nicholas & Fuller, Richard A. & McDonald-Madden, Eve, 2021. "Conserving migratory species while safeguarding ecosystem services," Ecological Modelling, Elsevier, vol. 442(C).
    6. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    7. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Yanhui Chen & Guosheng Li & Linlin Cui & Lijuan Li & Lei He & Peipei Ma, 2022. "The Effects of Tidal Flat Reclamation on the Stability of the Coastal Area in the Jiangsu Province, China, from the Perspective of Landscape Structure," Land, MDPI, vol. 11(3), pages 1-20, March.
    9. Younes Gaga & Imane Mehdaoui & Mohammed Kara & Amine Assouguem & Abdulrahman Al-Hashimi & Mohamed Ragab AbdelGawwad & Mohamed S. Elshikh & El Mokhtar Saoudi Hassani & Mona S. Alwahibi & Jamila Bahhou , 2023. "Elaboration and Characterization of a Biochar from Wastewater Sludge and Olive Mill Wastewater," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    10. Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Mukesh Kumar Soothar & Abdoul Kader Mounkaila Hamani & Mahendar Kumar Sootahar & Jingsheng Sun & Gao Yang & Saleem Maseeh Bhatti & Adama Traore, 2021. "Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize ( Zea mays L.) Seedlings under Salinity Stress," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    13. Justin P. Suraci & Tina G. Mozelewski & Caitlin E. Littlefield & Theresa Nogeire McRae & Ann Sorensen & Brett G. Dickson, 2023. "Management of U.S. Agricultural Lands Differentially Affects Avian Habitat Connectivity," Land, MDPI, vol. 12(4), pages 1-20, March.
    14. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Shisi Tang & Laixi Song & Shiqi Wan & Yafei Wang & Yazhen Jiang & Jinfeng Liao, 2022. "Long-Time-Series Evolution and Ecological Effects of Coastline Length in Coastal Zone: A Case Study of the Circum-Bohai Coastal Zone, China," Land, MDPI, vol. 11(8), pages 1-19, August.
    16. Kendall Valentine & Ellen R. Herbert & David C. Walters & Yaping Chen & Alexander J. Smith & Matthew L. Kirwan, 2023. "Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Li, Yi & Yao, Ning & Liang, Jiaping & Wang, Xiaofang & Niu, Ben & Jia, Yonglin & Jiang, Fuchang & Yu, Qiang & Liu, De Li & Feng, Hao & He, Hailong & Yang, Guang & Pulatov, Alim, 2023. "Rational biochar application rate for cotton nutrient content, growth, yields, productivity, and economic benefits under film-mulched trickle irrigation," Agricultural Water Management, Elsevier, vol. 276(C).
    18. Minjing Wang & Yanyan Kang & Zhuyou Sun & Jun Lei & Xiuqiang Peng, 2022. "Monitoring Wetland Landscape Evolution Using Landsat Time-Series Data: A Case Study of the Nantong Coast, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    19. Maru Ali & Osumanu Haruna Ahmed & Mohamadu Boyie Jalloh & Walter Charles Primus & Adiza Alhassan Musah & Ji Feng Ng, 2023. "Co-Composted Chicken Litter Biochar Increases Soil Nutrient Availability and Yield of Oryza sativa L," Land, MDPI, vol. 12(1), pages 1-20, January.
    20. Chao Zhang & Shuai Zhong & Xue Wang & Lei Shen & Litao Liu & Yujie Liu, 2019. "Land Use Change in Coastal Cities during the Rapid Urbanization Period from 1990 to 2016: A Case Study in Ningbo City, China," Sustainability, MDPI, vol. 11(7), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1717-:d:1231860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.