IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i9p1438-d902735.html
   My bibliography  Save this article

Response of an Invasive Plant Species ( Cynanchum acutum L.) to Changing Climate Conditions and Its Impact on Agricultural Landscapes

Author

Listed:
  • Buse Ar

    (Department of Landscape Architecture, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın 09100, Turkey)

  • Gamze Tuttu

    (Department of Forest Engineering, Faculty of Forestry, Çankırı Karatekin University, Çankırı 18200, Turkey)

  • Derya Gülçin

    (Department of Landscape Architecture, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın 09100, Turkey)

  • Ali Uğur Özcan

    (Department of Landscape Architecture, Faculty of Forestry, Çankırı Karatekin University, Çankırı 18200, Turkey)

  • Emre Kara

    (Department of Field Crops, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın 09100, Turkey)

  • Mustafa Sürmen

    (Department of Field Crops, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın 09100, Turkey)

  • Kerim Çiçek

    (Section of Zoology, Department of Biology, Faculty of Science, Ege University, Izmir 35100, Turkey
    Natural History Application and Research Centre, Ege University, Izmir 35100, Turkey)

  • Javier Velázquez

    (Department of Environment and Agroforestry, Faculty of Sciences and Arts, Catholic University of Ávila, 05005 Ávila, Spain)

Abstract

Forecasting the distribution patterns of invasive weed species under changing climate conditions is critical for the early identification of especially vulnerable regions and the implementation of effective preventive measures. In this study, the current and potential range of stranglewort ( Cynanchum acutum L.)—an invasive alien species (IAS) in certain regions—are predicted under various climate scenarios, using the maximum entropy algorithm. Species occurrence data representing the natural distribution of C. acutum and 15 of the WorldClim bioclimatic variables are used. With an ensemble method, the impact of climate change on the distribution of the species is predicted according to five CMIP6 climate change models and three scenarios (optimistic: SSP245; middle of the road: SSP370; and pessimistic: SSP585). According to the findings, it is predicted in all scenarios that C. acutum could expand its range to the north, particularly in agricultural landscapes. Therefore, the invasive status of this species will likely continue in the future. This emphasizes the need to determine the priority of conservation targets, especially for agricultural areas, to ensure food safety and protect biodiversity.

Suggested Citation

  • Buse Ar & Gamze Tuttu & Derya Gülçin & Ali Uğur Özcan & Emre Kara & Mustafa Sürmen & Kerim Çiçek & Javier Velázquez, 2022. "Response of an Invasive Plant Species ( Cynanchum acutum L.) to Changing Climate Conditions and Its Impact on Agricultural Landscapes," Land, MDPI, vol. 11(9), pages 1-20, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1438-:d:902735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/9/1438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/9/1438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark C. Andersen & Heather Adams & Bruce Hope & Mark Powell, 2004. "Risk Assessment for Invasive Species," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 787-793, August.
    2. Kathleen H Bowmer, 2013. "Ecosystem Effects from Nutrient and Pesticide Pollutants: Catchment Care as a Solution," Resources, MDPI, vol. 2(3), pages 1-18, September.
    3. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank H. Koch & Denys Yemshanov & Daniel W. McKenney & William D. Smith, 2009. "Evaluating Critical Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1227-1241, September.
    2. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    3. Haoxiang Zhao & Shanqing Yi & Yu Zhang & Nianwan Yang & Jianyang Guo & Hongmei Li & Xiaoqing Xian & Wanxue Liu, 2024. "Estimating the Optimal Control Areas of Two Classical Biocontrol Agents Against the Fall Armyworm Based on Hotspot Matching Analysis," Agriculture, MDPI, vol. 14(12), pages 1-14, December.
    4. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    5. Cameron G. Nay & Mark W. Brunson, 2013. "A War of Words: Do Conflict Metaphors Affect Beliefs about Managing “Unwanted” Plants?," Societies, MDPI, vol. 3(2), pages 1-12, March.
    6. Lin, Yu-Pin & Wang, Cheng-Long & Yu, Hsiao-Hsuan & Huang, Chung-Wei & Wang, Yung-Chieh & Chen, Yu-Wen & Wu, Wei-Yao, 2011. "Monitoring and estimating the flow conditions and fish presence probability under various flow conditions at reach scale using genetic algorithms and kriging methods," Ecological Modelling, Elsevier, vol. 222(3), pages 762-775.
    7. Julien CALAS & Antoine GODIN & Julie MAURIN (AFD) & and Etienne ESPAGNE (World Bank), 2022. "Global biodiversity scenarios: what do they tell us for biodiversity-related socioeconomic impacts?," Working Paper 1a39419b-ef1d-4b82-a7be-d, Agence française de développement.
    8. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    9. Soria-Auza, Rodrigo W. & Kessler, Michael & Bach, Kerstin & Barajas-Barbosa, Paola M. & Lehnert, Marcus & Herzog, Sebastian K. & Böhner, Jürgen, 2010. "Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: a case study from Bolivia," Ecological Modelling, Elsevier, vol. 221(8), pages 1221-1229.
    10. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    11. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    12. Daniela Remolina-Figueroa & David A. Prieto-Torres & Wesley Dáttilo & Ernesto Salgado Díaz & Laura E. Nuñez Rosas & Claudia Rodríguez-Flores & Adolfo G. Navarro-Sigüenza & María del Coro Arizmendi, 2022. "Together forever? Hummingbird-plant relationships in the face of climate warming," Climatic Change, Springer, vol. 175(1), pages 1-21, November.
    13. repec:plo:pone00:0025145 is not listed on IDEAS
    14. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    15. Huihui Zhang & Xiao Sun & Guoshuai Zhang & Xinke Zhang & Yujing Miao & Min Zhang & Zhan Feng & Rui Zeng & Jin Pei & Linfang Huang, 2022. "Potential Global Distribution of the Habitat of Endangered Gentiana rhodantha Franch : Predictions Based on MaxEnt Ecological Niche Modeling," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    16. Goodbody, Tristan R.H. & Coops, Nicholas C. & Srivastava, Vivek & Parsons, Bethany & Kearney, Sean P. & Rickbeil, Gregory J.M. & Stenhouse, Gordon B., 2021. "Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling," Ecological Modelling, Elsevier, vol. 440(C).
    17. Zhenan Jin & Wentao Yu & Haoxiang Zhao & Xiaoqing Xian & Kaiting Jing & Nianwan Yang & Xinmin Lu & Wanxue Liu, 2022. "Potential Global Distribution of Invasive Alien Species, Anthonomus grandis Boheman, under Current and Future Climate Using Optimal MaxEnt Model," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    18. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    19. Julien CALAS & Etienne ESPAGNE & Antoine GODIN & Julie MAURIN, 2022. "Global biodiversity scenarios: what do they tell us for Biodiversity-Related Financial Risks?," Working Paper df49be12-6355-45d6-84e3-4, Agence française de développement.
    20. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    21. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1438-:d:902735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.