IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2199-d993209.html
   My bibliography  Save this article

Spatial-Temporal Pattern and Influencing Factors of Land Ecological Carrying Capacity in The National Pilot Zones for Ecological Conservation in China

Author

Listed:
  • Zhenggen Fan

    (College of City Construction, Jiangxi Normal University, Nanchang 330022, China)

  • Ji Liu

    (College of City Construction, Jiangxi Normal University, Nanchang 330022, China)

  • Hu Yu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Hua Lu

    (Institute of Ecological Civilization, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Puwei Zhang

    (College of City Construction, Jiangxi Normal University, Nanchang 330022, China)

Abstract

Improving land ecological carrying capacity (LECC) is important in accelerating the realization of national ecological civilization construction goals. Based on the panel data of the first batch of prefecture-level cities in the National Pilot Zones for Ecological Conservation initiative from 2005 to 2019, this study analyzes the spatial–temporal pattern of LECC using the improved ecological footprint model, Theil–Sen’s slope estimator and Mann–Kendall test, and investigates the influencing factors of LECC using the geodetector. Results show that the overall land ecological carrying status of each province tends to improve but also shows remarkable interprovincial differences in development trend, with Guizhou outperforming Jiangxi and Fujian in general. The pattern of LECC security has apparent regional heterogeneity. Most prefecture-level cities have high ecological pressure and uneven spatial distribution but slowly improve overall. The influencing factor of forest land coverage and population density has strong explanatory power on the LECC, and the interactions among the factors are enhanced. The four aspects of land ecological construction should be carried out. A first step is to strengthen land ecological management and optimize the land use practices actively. Second, modern technology is used to establish real-time monitoring and early warning systems for LECC security. Third, the two key factors of forest land coverage and population density should be focused on, and enhancing their positive interaction with industrial structure and arable land utilization rate. Finally, the experience of model construction should be promoted in the Non-national Pilot Zones for Ecological Conservation in China. The aim is to enhance the effectiveness of land ecology measures further and promote the construction of national ecological civilization in China.

Suggested Citation

  • Zhenggen Fan & Ji Liu & Hu Yu & Hua Lu & Puwei Zhang, 2022. "Spatial-Temporal Pattern and Influencing Factors of Land Ecological Carrying Capacity in The National Pilot Zones for Ecological Conservation in China," Land, MDPI, vol. 11(12), pages 1-17, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2199-:d:993209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irmi Seidl & Clem A. Tisdell, 2003. "Carrying capacity reconsidered: from Malthus' population theory to cultural carrying capacity," Chapters, in: Ecological and Environmental Economics, chapter 13, pages 192-206, Edward Elgar Publishing.
    2. Benhong Peng & Yuanyuan Wang & Ehsan Elahi & Guo Wei, 2018. "Evaluation and Prediction of the Ecological Footprint and Ecological Carrying Capacity for Yangtze River Urban Agglomeration Based on the Grey Model," IJERPH, MDPI, vol. 15(11), pages 1-14, November.
    3. Yu Ding & Jian Peng, 2018. "Impacts of Urbanization of Mountainous Areas on Resources and Environment: Based on Ecological Footprint Model," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    4. Wackernagel, Mathis & Rees, William E., 1997. "Perceptual and structural barriers to investing in natural capital: Economics from an ecological footprint perspective," Ecological Economics, Elsevier, vol. 20(1), pages 3-24, January.
    5. Yao Lu & Xiaoshun Li & Heng Ni & Xin Chen & Chuyu Xia & Dongmei Jiang & Huiping Fan, 2019. "Temporal-Spatial Evolution of the Urban Ecological Footprint Based on Net Primary Productivity: A Case Study of Xuzhou Central Area, China," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    6. Haier Ying & Suya Chen & Yuqin Mao, 2022. "Research on Marine Ecological Carrying Capacity of Ningbo City in China Based on System Dynamics," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    7. He, Yafen & Xie, Hualin, 2019. "Exploring the spatiotemporal changes of ecological carrying capacity for regional sustainable development based on GIS: A case study of Nanchang City," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    8. Zhiyuan Zhu & Zhikun Mei & Shilin Li & Guangxin Ren & Yongzhong Feng, 2022. "Evaluation of Ecological Carrying Capacity and Identification of Its Influencing Factors Based on Remote Sensing and Geographic Information System: A Case Study of the Yellow River Basin in Shaanxi," Land, MDPI, vol. 11(7), pages 1-17, July.
    9. Natalie C. Ban & Georgina Grace Gurney & Nadine A. Marshall & Charlotte K. Whitney & Morena Mills & Stefan Gelcich & Nathan J. Bennett & Mairi C. Meehan & Caroline Butler & Stephen Ban & Tanya C. Tran, 2019. "Well-being outcomes of marine protected areas," Nature Sustainability, Nature, vol. 2(6), pages 524-532, June.
    10. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    11. Mohammed Achite & Tommaso Caloiero & Abderrezak Kamel Toubal, 2022. "Rainfall and Runoff Trend Analysis in the Wadi Mina Basin (Northern Algeria) Using Non-Parametric Tests and the ITA Method," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Wang & Bonoua Faye & Quanfeng Li & Yunkai Li, 2023. "A Spatio-Temporal Analysis of the Ecological Compensation for Cultivated Land in Northeast China," Land, MDPI, vol. 12(12), pages 1-20, December.
    2. Ling Li & Xingming Li & Hanghang Fan & Jie Lu & Xiuli Wang & Tianlin Zhai, 2024. "Quantifying and Zoning Ecological Compensation for Cultivated Land in Intensive Agricultural Areas: A Case Study in Henan Province, China," Land, MDPI, vol. 13(10), pages 1-21, October.
    3. Zhenggen Fan & Wentong Xia & Hu Yu & Ji Liu & Binghua Liu, 2024. "Land Use Carbon Budget Pattern and Carbon Compensation Mechanism of Counties in the Pearl River Basin: A Perspective Based on Fiscal Imbalance," Land, MDPI, vol. 13(8), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinjing Hu & Yong Huang & Jie Du, 2021. "The Impact of Urban Development Intensity on Ecological Carrying Capacity: A Case Study of Ecologically Fragile Areas," IJERPH, MDPI, vol. 18(13), pages 1-25, July.
    2. Xinhao Min & Yanning Wang & Jun Chen, 2022. "Resource Carrying Capacity Evaluation Based on Fuzzy Evaluation: Validation Using Karst Landscape Region in Southwest China," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    3. Gong Chen & Qi Li & Fei Peng & Hamed Karamian & Boyuan Tang, 2019. "Henan Ecological Security Evaluation Using Improved 3D Ecological Footprint Model Based on Emergy and Net Primary Productivity," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    4. Zhiyuan Zhu & Zhikun Mei & Shilin Li & Guangxin Ren & Yongzhong Feng, 2022. "Evaluation of Ecological Carrying Capacity and Identification of Its Influencing Factors Based on Remote Sensing and Geographic Information System: A Case Study of the Yellow River Basin in Shaanxi," Land, MDPI, vol. 11(7), pages 1-17, July.
    5. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    6. Karen Turner, 2006. "Additional precision provided by region-specific data: The identification of fuel-use and pollution-generation coefficients in the Jersey economy," Regional Studies, Taylor & Francis Journals, vol. 40(4), pages 347-364.
    7. Arup Roy & Ranjan DasGupta, 2024. "Economic Development, Energy Consumption, and Environmental Deterioration: A Non-Linear Evidence from India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(3), pages 721-747, September.
    8. Martin C. Whitby & W. Neil Adger, 1997. "Natural And Reproducible Capital And The Sustainability Of Land Use In The Uk: A Reply," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 454-458, January.
    9. Korhonen, Jouni & Snakin, Juha-Pekka, 2005. "Analysing the evolution of industrial ecosystems: concepts and application," Ecological Economics, Elsevier, vol. 52(2), pages 169-186, January.
    10. Suranjan Sinha & Surajit Chakraborty & Shatrajit Goswami, 2017. "Ecological footprint: an indicator of environmental sustainability of a surface coal mine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 807-824, June.
    11. Hua Liu & Dan-Yang Li & Rong Ma & Ming Ma, 2022. "Assessing the Ecological Risks Based on the Three-Dimensional Ecological Footprint Model in Gansu Province," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    12. Vail, David & Heldt, Tobias, 2004. "Governing snowmobilers in multiple-use landscapes: Swedish and Maine (USA) cases," Ecological Economics, Elsevier, vol. 48(4), pages 469-483, April.
    13. Prudence Dato, 2018. "Investment in Energy Efficiency, Adoption of Renewable Energy and Household Behavior: Evidence from OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    14. Lu, Yanhua & Yan, Lijuan & Li, Jie & Liang, Yunliang & Yang, Chuanjie & Li, Guang & Wu, Jiangqi & Xu, Hua, 2024. "Spatiotemporal evolution of county level ecological security based on an emergy ecological footprint model: The case of Dingxi, China," Ecological Modelling, Elsevier, vol. 490(C).
    15. Mangubhai, Sangeeta & Sykes, Helen & Manley, Marita & Vukikomoala, Kiji & Beattie, Madeline, 2020. "Contributions of tourism-based Marine Conservation Agreements to natural resource management in Fiji," Ecological Economics, Elsevier, vol. 171(C).
    16. Xin Yang & Fan Zhang & Cheng Luo & Anlu Zhang, 2019. "Farmland Ecological Compensation Zoning and Horizontal Fiscal Payment Mechanism in Wuhan Agglomeration, China, From the Perspective of Ecological Footprint," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    17. Timo Busch, 2020. "Industrial ecology, climate adaptation, and financial risk," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 285-290, April.
    18. Chuang-lin Fang & Chao Bao & Jin-chuan Huang, 2007. "Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1613-1633, September.
    19. Małgorzata Świąder & Szymon Szewrański & Jan K. Kazak, 2018. "Foodshed as an Example of Preliminary Research for Conducting Environmental Carrying Capacity Analysis," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    20. Yu Wang & Dejing Meng & Linna Li & Ying Wang, 2025. "Research on the Impact of Market-Based Environmental Regulation Policies on Ecological Pressure: Evidence from China’s Carbon Emissions Trading Pilot," Sustainability, MDPI, vol. 17(5), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2199-:d:993209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.