IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i9p897-d621912.html
   My bibliography  Save this article

Urban Green Space Arrangement for an Optimal Landscape Planning Strategy for Runoff Reduction

Author

Listed:
  • Byungsun Yang

    (Korea Institute of Civil Engineering and Building Technology, Goyang-si 10223, Korea)

  • Dongkun Lee

    (Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
    Department of Landscape Architecture and Rural System Engineering, Seoul National University, Seoul 08826, Korea)

Abstract

Increased impervious surfaces due to urbanization have reduced evaporation and infiltration into the soil compared with existing natural water cycle systems, which causes various problems, such as urban floods, landslides, and deterioration of water quality. To effectively solve the urban water cycle issue, green infrastructure using urban green space has emerged to reduce runoff and increase evaporation. It has the advantage of restoring the water cycle system of urban areas by complementing the failure of conventional stormwater treatment systems. However, urban areas under high-density development have limited green space for stormwater treatment. Hence, it is necessary to efficiently utilize street trees and small green spaces to improve the urban water cycle through green space. In this study, we simulated different green space distribution scenarios in the virtual domain to find the optimal strategy of green space planning. Compared to clustered scenarios, dispersed green space distribution scenarios and placing green space downstream were more effective in reducing the runoff amount. The paper provides insights into the considerations for determining green space spatial plan and zoning regulations for stormwater treatment by green infrastructure.

Suggested Citation

  • Byungsun Yang & Dongkun Lee, 2021. "Urban Green Space Arrangement for an Optimal Landscape Planning Strategy for Runoff Reduction," Land, MDPI, vol. 10(9), pages 1-12, August.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:897-:d:621912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/9/897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/9/897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyomin Kim & Dong-Kun Lee & Sunyong Sung, 2016. "Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability," Sustainability, MDPI, vol. 8(2), pages 1-17, January.
    2. Byungsun Yang & Dong Kun Lee, 2021. "Planning Strategy for the Reduction of Runoff Using Urban Green Space," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    3. Barah, Masoud & Khojandi, Anahita & Li, Xueping & Hathaway, Jon & Omitaomu, OluFemi, 2021. "Optimizing green infrastructure placement under precipitation uncertainty," Omega, Elsevier, vol. 100(C).
    4. Jeremy G. Carter & John Handley & Tom Butlin & Susannah Gill, 2018. "Adapting cities to climate change – exploring the flood risk management role of green infrastructure landscapes," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(9), pages 1535-1552, July.
    5. Liu, Wen & Chen, Weiping & Peng, Chi, 2014. "Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study," Ecological Modelling, Elsevier, vol. 291(C), pages 6-14.
    6. Rong Guo & Yujing Bai, 2019. "Simulation of an Urban-Rural Spatial Structure on the Basis of Green Infrastructure Assessment: The Case of Harbin, China," Land, MDPI, vol. 8(12), pages 1-21, December.
    7. Daniel Kozak & Hayley Henderson & Alejandro de Castro Mazarro & Demián Rotbart & Rodolfo Aradas, 2020. "Blue-Green Infrastructure (BGI) in Dense Urban Watersheds. The Case of the Medrano Stream Basin (MSB) in Buenos Aires," Sustainability, MDPI, vol. 12(6), pages 1-30, March.
    8. Evan Elderbrock & Chris Enright & Kathryn A. Lynch & Alexandra R. Rempel, 2020. "A Guide to Public Green Space Planning for Urban Ecosystem Services," Land, MDPI, vol. 9(10), pages 1-23, October.
    9. Mick Lennon & Mark Scott & Eoin O'Neill, 2014. "Urban Design and Adapting to Flood Risk: The Role of Green Infrastructure," Journal of Urban Design, Taylor & Francis Journals, vol. 19(5), pages 745-758, December.
    10. Liu, Wen & Chen, Weiping & Peng, Chi, 2015. "Influences of setting sizes and combination of green infrastructures on community’s stormwater runoff reduction," Ecological Modelling, Elsevier, vol. 318(C), pages 236-244.
    11. Janis Arnold & Janina Kleemann & Christine Fürst, 2018. "A Differentiated Spatial Assessment of Urban Ecosystem Services Based on Land Use Data in Halle, Germany," Land, MDPI, vol. 7(3), pages 1-29, August.
    12. Thomas Elmqvist & Erik Andersson & Niki Frantzeskaki & Timon McPhearson & Per Olsson & Owen Gaffney & Kazuhiko Takeuchi & Carl Folke, 2019. "Sustainability and resilience for transformation in the urban century," Nature Sustainability, Nature, vol. 2(4), pages 267-273, April.
    13. Fortino Acosta & Stephen Haroon, 2021. "Memorial Parking Trees: Resilient Modular Design with Nature-Based Solutions in Vulnerable Urban Areas," Land, MDPI, vol. 10(3), pages 1-16, March.
    14. Chiara Cortinovis & Grazia Zulian & Davide Geneletti, 2018. "Assessing Nature-Based Recreation to Support Urban Green Infrastructure Planning in Trento (Italy)," Land, MDPI, vol. 7(4), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Salata & Bertan Arslan, 2022. "Designing with Ecosystem Modelling: The Sponge District Application in İzmir, Turkey," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    2. Ryohei Ogawa & Ye Zhang & Vouchlay Theng & Zhongyu Guo & Manna Wang & Chihiro Yoshimura, 2023. "Capacity Assessment of Urban Green Space for Mitigating Combined Sewer Overflows in the Tokyo Metropolitan Area," Land, MDPI, vol. 12(5), pages 1-16, April.
    3. Ángela Lara & Leandro del Moral, 2022. "Nature-Based Solutions to Hydro-Climatic Risks: Barriers and Triggers for Their Implementation in Seville (Spain)," Land, MDPI, vol. 11(6), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seung Kyum Kim & Paul Joosse & Mia M. Bennett & Terry Gevelt, 2020. "Impacts of green infrastructure on flood risk perceptions in Hong Kong," Climatic Change, Springer, vol. 162(4), pages 2277-2299, October.
    2. Barah, Masoud & Khojandi, Anahita & Li, Xueping & Hathaway, Jon & Omitaomu, OluFemi, 2021. "Optimizing green infrastructure placement under precipitation uncertainty," Omega, Elsevier, vol. 100(C).
    3. Byungsun Yang & Dong Kun Lee, 2021. "Planning Strategy for the Reduction of Runoff Using Urban Green Space," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    4. Dongwoo Lee & Kyushik Oh & Jungeun Suh, 2022. "Diagnosis and Prioritization of Vulnerable Areas of Urban Ecosystem Regulation Services," Land, MDPI, vol. 11(10), pages 1-22, October.
    5. Yu Chen & Jacopo Gaspari, 2023. "Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    6. Elliot, T. & Torres-Matallana, J.A. & Goldstein, B. & Babí Almenar, J. & Gómez-Baggethun, E. & Proença, V. & Rugani, B., 2022. "An expanded framing of ecosystem services is needed for a sustainable urban future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    8. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    9. Chi Zhang & Zhongchang Sun & Qiang Xing & Jialong Sun & Tianyu Xia & Hao Yu, 2021. "Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
    10. Nancy Andrea Ramírez-Agudelo & Roger Porcar Anento & Miriam Villares & Elisabet Roca, 2020. "Nature-Based Solutions for Water Management in Peri-Urban Areas: Barriers and Lessons Learned from Implementation Experiences," Sustainability, MDPI, vol. 12(23), pages 1-36, November.
    11. Frantzeskaki, Niki & Buchel, Sophie & Spork, Charlie & Ludwig, Kathrin & Kok, Marcel T.J., 2019. "The Multiple Roles of ICLEI: Intermediating to Innovate Urban Biodiversity Governance," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    12. Stefano Moroni & Ward Rauws & Stefano Cozzolino, 2020. "Forms of self-organization: Urban complexity and planning implications," Environment and Planning B, , vol. 47(2), pages 220-234, February.
    13. Pappalardo, Viviana & La Rosa, Daniele & Campisano, Alberto & La Greca, Paolo, 2017. "The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study," Ecosystem Services, Elsevier, vol. 26(PB), pages 345-354.
    14. Roberta Ingaramo & Luca Pascale, 2020. "An Interpretative Matrix for an Adaptive Design Approach. Italian School Infrastructure: Safety and Social Restoration," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    15. Ángela Lara & Leandro del Moral, 2022. "Nature-Based Solutions to Hydro-Climatic Risks: Barriers and Triggers for Their Implementation in Seville (Spain)," Land, MDPI, vol. 11(6), pages 1-25, June.
    16. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.
    17. Barbara Vojvodíková & Iva Tichá & Anna Starzewska-Sikorska, 2022. "Implementing Nature-Based Solutions in Urban Spaces in the Context of the Sense of Danger That Citizens May Feel," Land, MDPI, vol. 11(10), pages 1-21, October.
    18. Xueling Zhang & Ruoxuan Huang & Yixuan Yang, 2022. "On the Landscape Activity Measure Coupling Ecological Index and Public Vitality Index of UGI: The Case Study of Zhongshan, China," Land, MDPI, vol. 11(11), pages 1-32, October.
    19. Hyomin Kim & Dong-Kun Lee & Sunyong Sung, 2016. "Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability," Sustainability, MDPI, vol. 8(2), pages 1-17, January.
    20. Anabel Ortega-Fernández & Rodrigo Martín-Rojas & Víctor Jesús García-Morales, 2020. "Artificial Intelligence in the Urban Environment: Smart Cities as Models for Developing Innovation and Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:897-:d:621912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.