IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i6p648-d577015.html
   My bibliography  Save this article

Identifying Urban Poverty Using High-Resolution Satellite Imagery and Machine Learning Approaches: Implications for Housing Inequality

Author

Listed:
  • Guie Li

    (School of Public Policy & Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhongliang Cai

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China)

  • Yun Qian

    (School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China)

  • Fei Chen

    (Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China)

Abstract

Enriching Asian perspectives on the rapid identification of urban poverty and its implications for housing inequality, this paper contributes empirical evidence about the utility of image features derived from high-resolution satellite imagery and machine learning approaches for identifying urban poverty in China at the community level. For the case of the Jiangxia District and Huangpi District of Wuhan, image features, including perimeter, line segment detector (LSD), Hough transform, gray-level cooccurrence matrix (GLCM), histogram of oriented gradients (HoG), and local binary patterns (LBP), are calculated, and four machine learning approaches and 25 variables are applied to identify urban poverty and relatively important variables. The results show that image features and machine learning approaches can be used to identify urban poverty with the best model performance with a coefficient of determination, R 2 , of 0.5341 and 0.5324 for Jiangxia and Huangpi, respectively, although some differences exist among the approaches and study areas. The importance of each variable differs for each approach and study area; however, the relatively important variables are similar. In particular, four variables achieved relatively satisfactory prediction results for all models and presented obvious differences in varying communities with different poverty levels. Housing inequality within low-income neighborhoods, which is a response to gaps in wealth, income, and housing affordability among social groups, is an important manifestation of urban poverty. Policy makers can implement these findings to rapidly identify urban poverty, and the findings have potential applications for addressing housing inequality and proving the rationality of urban planning for building a sustainable society.

Suggested Citation

  • Guie Li & Zhongliang Cai & Yun Qian & Fei Chen, 2021. "Identifying Urban Poverty Using High-Resolution Satellite Imagery and Machine Learning Approaches: Implications for Housing Inequality," Land, MDPI, vol. 10(6), pages 1-16, June.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:648-:d:577015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/6/648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/6/648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucci, Paula & Bhatkal, Tanvi & Khan, Amina, 2018. "Are we underestimating urban poverty?," World Development, Elsevier, vol. 103(C), pages 297-310.
    2. Appleton, Simon & Song, Lina & Xia, Qingjie, 2010. "Growing out of Poverty: Trends and Patterns of Urban Poverty in China 1988-2002," World Development, Elsevier, vol. 38(5), pages 665-678, May.
    3. Hu, Lirong & He, Shenjing & Han, Zixuan & Xiao, He & Su, Shiliang & Weng, Min & Cai, Zhongliang, 2019. "Monitoring housing rental prices based on social media:An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies," Land Use Policy, Elsevier, vol. 82(C), pages 657-673.
    4. Juan C. Duque & Vicente Royuela & Miguel Noreña, 2012. "A Stepwise Procedure to Determinate a Suitable Scale for the Spatial Delimitation of Urban Slums," Advances in Spatial Science, in: Esteban Fernández Vázquez & Fernando Rubiera Morollón (ed.), Defining the Spatial Scale in Modern Regional Analysis, edition 127, chapter 0, pages 237-254, Springer.
    5. Hu, Lirong & He, Shenjing & Luo, Yun & Su, Shiliang & Xin, Jing & Weng, Min, 2020. "A social-media-based approach to assessing the effectiveness of equitable housing policy in mitigating education accessibility induced social inequalities in Shanghai, China," Land Use Policy, Elsevier, vol. 94(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aziza Usmanova & Ahmed Aziz & Dilshodjon Rakhmonov & Walid Osamy, 2022. "Utilities of Artificial Intelligence in Poverty Prediction: A Review," Sustainability, MDPI, vol. 14(21), pages 1-39, October.
    2. Ziqi Zhou & Yung Yau, 2021. "The Small Property Rights Housing Institution in Mainland China: The Perspective of Substitutability of Institutional Functions," Land, MDPI, vol. 10(9), pages 1-19, August.
    3. Yiting Su & Jing Li & Dongchuan Wang & Jiabao Yue & Xingguang Yan, 2022. "Spatio-Temporal Synergy between Urban Built-Up Areas and Poverty Transformation in Tibet," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    4. Nattapong Puttanapong & Amornrat Luenam & Pit Jongwattanakul, 2022. "Spatial Analysis of Inequality in Thailand: Applications of Satellite Data and Spatial Statistics/Econometrics," Sustainability, MDPI, vol. 14(7), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Peng & Hui Mao, 2023. "The Effect of Digital Financial Inclusion on Relative Poverty Among Urban Households: A Case Study on China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 165(2), pages 377-407, January.
    2. Sheng Li & Yi Jiang & Shuisong Ke & Ke Nie & Chao Wu, 2021. "Understanding the Effects of Influential Factors on Housing Prices by Combining Extreme Gradient Boosting and a Hedonic Price Model (XGBoost-HPM)," Land, MDPI, vol. 10(5), pages 1-15, May.
    3. Wu, Chao & Du, Yihao & Li, Sheng & Liu, Pengyu & Ye, Xinyue, 2022. "Does visual contact with green space impact housing pricesʔ An integrated approach of machine learning and hedonic modeling based on the perception of green space," Land Use Policy, Elsevier, vol. 115(C).
    4. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    5. Janz, Teresa & Augsburg, Britta & Gassmann, Franziska & Nimeh, Zina, 2023. "Leaving no one behind: Urban poverty traps in Sub-Saharan Africa," World Development, Elsevier, vol. 172(C).
    6. Moisés Obaco & Juan Pablo Díaz-Sánchez, 2018. "“Urbanization in Ecuador: An overview using the FUA definition”," IREA Working Papers 201814, University of Barcelona, Research Institute of Applied Economics, revised Oct 2018.
    7. Chen, Shaohua & Ravallion, Martin, 2021. "Reconciling the conflicting narratives on poverty in China," Journal of Development Economics, Elsevier, vol. 153(C).
    8. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    9. Chucai Peng & Yang Xiang & Luxia Chen & Yangyang Zhang & Zhixiang Zhou, 2023. "The Impact of the Type and Abundance of Urban Blue Space on House Prices: A Case Study of Eight Megacities in China," Land, MDPI, vol. 12(4), pages 1-27, April.
    10. Alice Barreca, 2022. "Architectural Quality and the Housing Market: Values of the Late Twentieth Century Built Heritage," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    11. Shenggen Fan & Ravi Kanbur & Shang-Jin Wei & Xiaobo Zhang, 2013. "The Economics of China: Successes and Challenges," NBER Working Papers 19648, National Bureau of Economic Research, Inc.
    12. Zhenchao Zhang & Weixin Luan & Chuang Tian & Min Su, 2025. "Impact of Urban Expansion on School Quality in Compulsory Education: A Spatio-Temporal Study of Dalian, China," Land, MDPI, vol. 14(2), pages 1-20, January.
    13. Dana R Thomson & Douglas R Leasure & Tomas Bird & Nikos Tzavidis & Andrew J Tatem, 2022. "How accurate are WorldPop-Global-Unconstrained gridded population data at the cell-level?: A simulation analysis in urban Namibia," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-23, July.
    14. Begum, Syeda Shahanara & Deng, Quheng & Gustafsson, Björn, 2012. "Economic growth and child poverty reduction in Bangladesh and China," Journal of Asian Economics, Elsevier, vol. 23(1), pages 73-85.
    15. Hyunsoo Kim & Youngwoo Kwon & Yeol Choi, 2020. "Assessing the Impact of Public Rental Housing on the Housing Prices in Proximity: Based on the Regional and Local Level of Price Prediction Models Using Long Short-Term Memory (LSTM)," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    16. Felix S K Agyemang & Rashid Memon & Sean Fox, 2023. "Mapping urban living standards and economic activity in developing countries with energy data," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-17, September.
    17. David Rey-Blanco & Pelayo Arbués & Fernando A. López & Antonio Páez, 2024. "Using machine learning to identify spatial market segments. A reproducible study of major Spanish markets," Environment and Planning B, , vol. 51(1), pages 89-108, January.
    18. Zhang, Yanlong & Zhou, Xiaoyu & Lei, Wei, 2017. "Social Capital and Its Contingent Value in Poverty Reduction: Evidence from Western China," World Development, Elsevier, vol. 93(C), pages 350-361.
    19. Meng Yuan & Hongjuan Wu, 2024. "Positive or Negative: The Heterogeneities in the Effects of Urban Regeneration on Surrounding Economic Vitality—From the Perspective of Housing Price," Land, MDPI, vol. 13(5), pages 1-27, May.
    20. Cyprian Chwiałkowski & Adam Zydroń, 2021. "Socio-Economic and Spatial Characteristics of Wielkopolski National Park: Application of the Hedonic Pricing Method," Sustainability, MDPI, vol. 13(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:648-:d:577015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.