IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i6p607-d570154.html
   My bibliography  Save this article

Planning Strategies of Wind Corridor Forests Utilizing the Properties of Cold Air

Author

Listed:
  • Uk-Je Sung

    (Department of Landscape Architecture, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea)

  • Jeong-Hee Eum

    (Department of Landscape Architecture, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea)

  • Jeong-Min Son

    (Department of Landscape Architecture, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea)

  • Jeong-Hak Oh

    (Division of Urban Forests, National Institute of Forest Science, 57 Hoegi-ro, Dongdaemun-gu, Seoul 02455, Korea)

Abstract

A wind corridor forest is defined as an urban forest for utilizing the functions of a wind corridor that allow “cool and fresh air (cold air)” generated in forests at night to flow to urban development areas. This study aims to provide planning strategies for implementing a wind corridor forest by analyzing current conditions in Haengbok City (HBC region), Sejong, South Korea. The HBC region had many wind-generating forests (WGF), wind-spreading forests (WSF), and wind-connecting forests (WCF), and secured the connections among the target areas of each wind corridor forest. Despite the favorable conditions for a wind corridor forest, cold air flow showed that there are regions with unfavorable wind conditions in the HBC region. In order to strengthen the functions of a wind corridor forests in the HBC region, four zones were distinguished according to the functional characteristics. Additionally, the planning strategies of a wind corridor forests suitable for each zone were provided, and the strategies for establishing a wind corridor forest were proposed. The results of this study can be used as the fundamental data for establishing guidelines for a wind corridor forest and utilized as resources for selecting regions suitable for a wind corridor forest.

Suggested Citation

  • Uk-Je Sung & Jeong-Hee Eum & Jeong-Min Son & Jeong-Hak Oh, 2021. "Planning Strategies of Wind Corridor Forests Utilizing the Properties of Cold Air," Land, MDPI, vol. 10(6), pages 1-17, June.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:607-:d:570154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/6/607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/6/607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    2. Jeong-Min Son & Jeong-Hee Eum & Dong-Pil Kim & Jino Kwon, 2018. "Management Strategies of Thermal Environment in Urban Area Using the Cooling Function of the Mountains: A Case Study of the Honam Jeongmaek Areas in South Korea," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    3. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    4. Heechul Kim & Sungjo Hong, 2021. "Differences in the Influence of Microclimate on Pedestrian Volume According to Land-Use," Land, MDPI, vol. 10(1), pages 1-18, January.
    5. Ran Goldblatt & Abdullah Addas & Daynan Crull & Ahmad Maghrabi & Gabriel Gene Levin & Steven Rubinyi, 2021. "Remotely Sensed Derived Land Surface Temperature (LST) as a Proxy for Air Temperature and Thermal Comfort at a Small Geographical Scale," Land, MDPI, vol. 10(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Zuo & Chengcheng Liang & Jing Chen & Rui Xi & Junfei Zhang, 2023. "Machine Learning-Based Urban Renovation Design for Improving Wind Environment: A Case Study in Xi’an, China," Land, MDPI, vol. 12(4), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    2. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    3. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    4. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    5. Soumya Satyakanta Sethi & V. Vinoj & Partha Pratim Gogoi & Kiranmayi Landu & Debadatta Swain & U. C. Mohanty, 2024. "Spatio-temporal evolution of surface urban heat island over Bhubaneswar-Cuttack twin city: a rapidly growing tropical urban complex in Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15381-15402, June.
    6. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    7. Marie De Groeve & Eda Kale & Scott Allan Orr & Tim De Kock, 2023. "Preliminary Experimental Laboratory Methods to Analyse the Insulation Capacity of Vertical Greening on Temperature and Relative Humidity," Sustainability, MDPI, vol. 15(15), pages 1-13, July.
    8. Lin Ma & Yueyao Wang & Ze Liang & Jiaqi Ding & Jiashu Shen & Feili Wei & Shuangcheng Li, 2021. "Changing Effect of Urban Form on the Seasonal and Diurnal Variations of Surface Urban Heat Island Intensities (SUHIIs) in More Than 3000 Cities in China," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    9. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    10. Hassan Saeed Khan & Riccardo Paolini & Mattheos Santamouris & Peter Caccetta, 2020. "Exploring the Synergies between Urban Overheating and Heatwaves (HWs) in Western Sydney," Energies, MDPI, vol. 13(2), pages 1-17, January.
    11. Ting Wei & Wei Li & Juan Tang, 2024. "Decoding Tianjin: How Does Urban Form Shape the Diurnal Cycle of Surface Temperature?," Sustainability, MDPI, vol. 16(23), pages 1-27, November.
    12. Molitor, David & White, Corey, 2024. "Do cities mitigate or exacerbate environmental damages to health?," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    13. Seungwon Kang & Dalbyul Lee & Jiyong Park & Juchul Jung, 2022. "Exploring Urban Forms Vulnerable to Urban Heat Islands: A Multiscale Analysis," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    14. Xing Li & Cuicui Cao & Chang Liu & Wenhao He & Kaibo Wu & Yang Wang & Borui Xu & Ziao Tian & Enming Song & Jizhai Cui & Gaoshan Huang & Changlin Zheng & Zengfeng Di & Xun Cao & Yongfeng Mei, 2022. "Self-rolling of vanadium dioxide nanomembranes for enhanced multi-level solar modulation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Wei Song & Xiangzheng Deng, 2015. "Effects of Urbanization-Induced Cultivated Land Loss on Ecosystem Services in the North China Plain," Energies, MDPI, vol. 8(6), pages 1-16, June.
    16. Lingyi Ouyang & Hao Guo & Xiujin Song & Tingting Hong, 2025. "Spatial Impact Dynamics of the “Mountain–City–Sea” Pattern on the Urban Thermal Environment and Adaptive Zoning Regulation," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
    17. Ainhoa Arriazu-Ramos & Jesús Miguel Santamaría & Aurora Monge-Barrio & Maira Bes-Rastrollo & Sonia Gutierrez Gabriel & Nuria Benito Frias & Ana Sánchez-Ostiz, 2025. "Health Impacts of Urban Environmental Parameters: A Review of Air Pollution, Heat, Noise, Green Spaces and Mobility," Sustainability, MDPI, vol. 17(10), pages 1-23, May.
    18. Dongying Li & Galen D Newman & Bev Wilson & Yue Zhang & Robert D Brown, 2022. "Modeling the relationships between historical redlining, urban heat, and heat-related emergency department visits: An examination of 11 Texas cities," Environment and Planning B, , vol. 49(3), pages 933-952, March.
    19. Djacinto Monteiro dos Santos & Renata Libonati & Beatriz N Garcia & João L Geirinhas & Barbara Bresani Salvi & Eliane Lima e Silva & Julia A Rodrigues & Leonardo F Peres & Ana Russo & Renata Gracie & , 2024. "Twenty-first-century demographic and social inequalities of heat-related deaths in Brazilian urban areas," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-30, January.
    20. Brozovsky, J. & Gaitani, N. & Gustavsen, A., 2021. "A systematic review of urban climate research in cold and polar climate regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:607-:d:570154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.