IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i10p1025-d647193.html
   My bibliography  Save this article

Effects of Urbanization on Landscape Patterns in the Middle Reaches of the Yangtze River Region

Author

Listed:
  • Yang Yi

    (Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Innovation Alliance of National Forestry and Grassland Administration on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
    School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
    Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    Shanghai Foundation Ding Environmental Technology Company, Shanghai 200063, China)

  • Chen Zhang

    (Shanghai Foundation Ding Environmental Technology Company, Shanghai 200063, China)

  • Guilian Zhang

    (Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Innovation Alliance of National Forestry and Grassland Administration on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China)

  • Luqi Xing

    (Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Innovation Alliance of National Forestry and Grassland Administration on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China)

  • Qicheng Zhong

    (Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Innovation Alliance of National Forestry and Grassland Administration on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China)

  • Jialin Liu

    (Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Innovation Alliance of National Forestry and Grassland Administration on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
    Harvard China Project, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, USA)

  • Yichen Lin

    (Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Innovation Alliance of National Forestry and Grassland Administration on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China)

  • Xiewei Zheng

    (Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Innovation Alliance of National Forestry and Grassland Administration on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China)

  • Na Yang

    (Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Innovation Alliance of National Forestry and Grassland Administration on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China)

  • Hao Sun

    (Shanghai Foundation Ding Environmental Technology Company, Shanghai 200063, China)

  • Mingchang Shi

    (Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Hongzhang Kang

    (School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
    School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

The middle reaches of the Yangtze River region (MRYRR) are China’s first trans-regional urban agglomeration, located in the center of the Yangtze River Economic Belt. The MRYRR is an important ecological reserve, and its land cover changes are affected by both socio-economic development and geographical environment. In this paper, Landsat ETM/TM/OLI remote sensing images were used to monitor land use and landscape patterns from 1990 to 2015. Through supervised classification, land use transfer matrix, landscape pattern metrics and correlation analysis, the spatial-temporal patterns of land use change and its relationship with socio-economic in the study area were revealed. The results showed that: (1) the main land use types in the study area were cropland (CL) and forestland (FL), accounting for more than three-quarters of the study area. During the study period, built-up land (BL) increased, CL decreased, FL increased first and then decreased; (2) the BL expanded mainly by occupying CL and FL, and regional landscape pattern was gradually fragmented, with complex patch shape and increasing diversity and heterogeneity. Among them, the BL is gradually gathered, and the FL and CL are gradually fragmented; (3) in the past 25 years, the urbanization process in this region has been obvious, and the Gross Domestic Product (GDP) has increased by 36 times. The socioeconomic variables were positively correlated with BL, orchard (OL) and Shannon diversity index (SHID), and negatively correlated with CL, Wasteland (WL), mean patch size (MPS) and contagion size (CONTAG). The results showed that the urbanization development has a great impact on the region, and the ecological protection task is still challenging. It is necessary to protect high-quality cropland and draw a red line for ecological protection. We should strengthen the construction of ecological corridors and ecological nodes to adapt to regional sustainable development.

Suggested Citation

  • Yang Yi & Chen Zhang & Guilian Zhang & Luqi Xing & Qicheng Zhong & Jialin Liu & Yichen Lin & Xiewei Zheng & Na Yang & Hao Sun & Mingchang Shi & Hongzhang Kang, 2021. "Effects of Urbanization on Landscape Patterns in the Middle Reaches of the Yangtze River Region," Land, MDPI, vol. 10(10), pages 1-17, September.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:10:p:1025-:d:647193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/10/1025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/10/1025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wanxu & Ye, Xinyue & Li, Jiangfeng & Fan, Xin & Liu, Qingsong & Dong, Weichuan, 2019. "Analyzing requisition–compensation balance of farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze River Urban Agglomerations," Land Use Policy, Elsevier, vol. 83(C), pages 134-146.
    2. Yang Yi & Yuanyuan Zhao & Guodong Ding & Guanglei Gao & Mingchang Shi & Yue Cao, 2016. "Effects of Urbanization on Landscape Patterns in a Mountainous Area: A Case Study in the Mentougou District, Beijing, China," Sustainability, MDPI, vol. 8(11), pages 1-14, November.
    3. Liu, Dongya & Zheng, Xinqi & Wang, Hongbin, 2020. "Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata," Ecological Modelling, Elsevier, vol. 417(C).
    4. Asimeh, Mahboubeh & Nooripoor, Mehdi & Azadi, Hossein & Van Eetvelde, Veerle & Sklenička, Petr & Witlox, Frank, 2020. "Agricultural land use sustainability in Southwest Iran: Improving land leveling using consolidation plans," Land Use Policy, Elsevier, vol. 94(C).
    5. Jin-Hyo Kim & Oh-Sung Kwon & Jung-Hwa Ra, 2021. "Urban Type Classification and Characteristic Analysis through Time-Series Environmental Changes for Land Use Management for 31 Satellite Cities around Seoul, South Korea," Land, MDPI, vol. 10(8), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luhui Qi & Liqi Jia & Yubin Luo & Yuanyi Chen & Minggang Peng, 2022. "The External Characteristics and Mechanism of Urban Road Corridors to Agglomeration: Case Study for Guangzhou, China," Land, MDPI, vol. 11(7), pages 1-17, July.
    2. Yang Yi & Chen Zhang & Jinqi Zhu & Yugang Zhang & Hao Sun & Hongzhang Kang, 2022. "Spatio-Temporal Evolution, Prediction and Optimization of LUCC Based on CA-Markov and InVEST Models: A Case Study of Mentougou District, Beijing," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    3. Yang Yi & Mingchang Shi & Jialin Liu & Chen Zhang & Xiaoding Yi & Sha Li & Chunyang Chen & Liangzhao Lin, 2022. "Spatial Distribution of Precise Suitability of Plantation: A Case Study of Main Coniferous Forests in Hubei Province, China," Land, MDPI, vol. 11(5), pages 1-19, May.
    4. Yanbo Duan & Yu Gary Gao & Yusen Zhang & Huawei Li & Zhonghui Li & Ziying Zhou & Guohang Tian & Yakai Lei, 2022. "“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics," Land, MDPI, vol. 11(11), pages 1-23, October.
    5. Xin Li & Bin Fang & Mengru Yin & Tao Jin & Xin Xu, 2022. "Multi-Dimensional Urbanization Coordinated Evolution Process and Ecological Risk Response in the Yangtze River Delta," Land, MDPI, vol. 11(5), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafi, Ahsan & Wang, Zhanqi & Ehsan, Muhsan & Riaz, Faizan Ahmed & Ali, Muhammad Rashid & Xu, Feng, 2023. "A game theory approach to land acquisition conflicts in Pakistan," Land Use Policy, Elsevier, vol. 132(C).
    2. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    3. Quanfeng Li & Zhe Dong & Guoming Du & Aizheng Yang, 2021. "Spatial Differentiation of Cultivated Land Use Intensification in Village Settings: A Survey of Typical Chinese Villages," Land, MDPI, vol. 10(3), pages 1-18, March.
    4. Dongya Liu & Xinqi Zheng & Lei Zhang, 2021. "Simulation of Spatiotemporal Relationship between COVID-19 Propagation and Regional Economic Development in China," Land, MDPI, vol. 10(6), pages 1-15, June.
    5. Yingqiang Song & Zeao Zhang & Yan Li & Runyan Zou & Lu Wang & Hao Yang & Yueming Hu, 2023. "The Role of High Nature Value Farmland for Landscape and Soil Pollution Assessment in a Coastal Delta in China Based on High-Resolution Indicators," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    6. Ramezani, Mohammadreza & Dourandish, Arash & Jamali Jaghdani, Tinoush & Aminizadeh, Milad, 2022. "The influence of dense planting system on the technical efficiency of saffron production and land use sustainability: Empirical evidence from Gonabad county, Iran," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(1).
    7. Haojie Liu & Jinyue Liu & Weixin Yang & Jianing Chen & Mingyang Zhu, 2020. "Analysis and Prediction of Land Use in Beijing-Tianjin-Hebei Region: A Study Based on the Improved Convolutional Neural Network Model," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    8. Jiang, Xue & Li, Bingxin & Zhao, Hongyu & Zhang, Qiqi & Song, Xiaoya & Zhang, Haoran, 2022. "Examining the spatial simulation and land-use reorganisation mechanism of agricultural suburban settlements using a cellular-automata and agent-based model: Six settlements in China," Land Use Policy, Elsevier, vol. 120(C).
    9. Wei Li & Zhenjie Chen & Manchun Li & Xiaoqian Qiu & QiQi Zhao & Yihua Chen, 2025. "Spatial conflict identification and scenario coordination for construction‒agricultural‒ecological land use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 1933-1961, January.
    10. Chen, Wanxu & Chi, Guangqing & Li, Jiangfeng, 2020. "The spatial aspect of ecosystem services balance and its determinants," Land Use Policy, Elsevier, vol. 90(C).
    11. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    12. Jingjie Liu & Min Xia, 2023. "Influencing Factors Analysis and Optimization of Land Use Allocation: Combining MAS with MOPSO Procedure," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    13. Zhou, Yang & Li, Peixuan & Zhang, Qi & Cheng, Guoqiang, 2025. "Socio-economic impacts, challenges, and strategies for whole-region comprehensive land consolidation in China," Land Use Policy, Elsevier, vol. 150(C).
    14. Zhao, Xiang & Cai, Bocheng & He, Jianhua & Kong, Xuesong, 2024. "Identifying potential rural residential areas for land consolidation using a data driven agent-based model," Land Use Policy, Elsevier, vol. 145(C).
    15. Li Yuan & Jing Xu & Binrui Feng, 2024. "Evaluation and Prediction of Carbon Storage in the Qinghai-Tibet Plateau by Coupling the GMMOP and PLUS Models," Sustainability, MDPI, vol. 16(13), pages 1-19, July.
    16. Chen, Xin & Yu, Le & Du, Zhenrong & Liu, Zhu & Qi, Yuan & Liu, Tao & Gong, Peng, 2022. "Toward sustainable land use in China: A perspective on China’s national land surveys," Land Use Policy, Elsevier, vol. 123(C).
    17. Wang, Han & Lu, Siying & Lu, Bo & Nie, Xin, 2021. "Overt and covert: The relationship between the transfer of land development rights and carbon emissions," Land Use Policy, Elsevier, vol. 108(C).
    18. Tzong-Haw Lee & Brian Lee & Yi-Ju Su & Hung-Hao Chang, 2021. "Are There Any Undesired Effects of Anti-Land Fragmentation Programs on Farm Production Practices and Farm Input Use?," Land, MDPI, vol. 10(2), pages 1-13, February.
    19. Yang Yi & Mingchang Shi & Chunjiang Liu & Hongzhang Kang & Bin Wang, 2021. "On Landscape Patterns in Typical Mountainous Counties Middle Reaches of the Yangtze River in China," IJERPH, MDPI, vol. 18(8), pages 1-15, April.
    20. Alysha van Duynhoven & Suzana Dragićević, 2021. "Exploring the Sensitivity of Recurrent Neural Network Models for Forecasting Land Cover Change," Land, MDPI, vol. 10(3), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:10:p:1025-:d:647193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.