IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i9p506-d1747789.html
   My bibliography  Save this article

Performance of Pairs Trading Strategies Based on Various Copula Methods

Author

Listed:
  • Yufei Sun

    (Department of Quantitative Finance and Machine Learning, Faculty of Economic Science, University of Warsaw, 00-241 Warszawa, Poland)

Abstract

This study evaluates three pairs trading strategies—the distance method (DM), mispricing index (MPI) copula, and mixed copula—across the Chinese equity market from 2005 to 2024, incorporating time-varying transaction costs. To enhance computational efficiency, a novel two-step methodology is proposed that first selects candidate pairs based on the sum of squared differences and then applies copula models to capture nonlinear and asymmetric dependence structures between stocks. Pre-cost monthly excess returns are 84, 30, and 25 basis points, respectively, dropping to 81, 23, and 15 basis points post-costs. While the DM consistently delivers higher returns, copula strategies offer advantages in stability and resilience, especially in volatile markets. The Student-t copula proves particularly effective in capturing dependence structures with fat tails and asymmetric correlations. Although copula methods face challenges such as unconverged trades—instances where spreads fail to revert within the trading horizon—they nonetheless highlight the diversification and risk mitigation potential of advanced dependence-based approaches. Enhancing trade convergence and controlling downside risk could further improve copula strategy performance. Overall, the results highlight the diversification and risk mitigation potential of advanced copula-based pairs trading models under dynamic market conditions.

Suggested Citation

  • Yufei Sun, 2025. "Performance of Pairs Trading Strategies Based on Various Copula Methods," JRFM, MDPI, vol. 18(9), pages 1-60, September.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:506-:d:1747789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/9/506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/9/506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Vinnie Ko & Nils Lid Hjort & Ingrid Hobæk Haff, 2019. "Focused information criteria for copulas," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(4), pages 1117-1140, December.
    3. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    4. GholamReza Keshavarz Haddad & Hassan Talebi, 2023. "The profitability of pair trading strategy in stock markets: Evidence from Toronto stock exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 193-207, January.
    5. Timofei Bogomolov, 2013. "Pairs trading based on statistical variability of the spread process," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1411-1430, September.
    6. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    2. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    3. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    4. BenSaïda, Ahmed, 2018. "The contagion effect in European sovereign debt markets: A regime-switching vine copula approach," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 153-165.
    5. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    6. Thijs Markwat, 2014. "The rise of global stock market crash probabilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(4), pages 557-571, April.
    7. Jean-David Fermanian & Olivier Lopez, 2015. "Single-index copulae," Working Papers 2015-12, Center for Research in Economics and Statistics.
    8. Fermanian, Jean-David & Lopez, Olivier, 2018. "Single-index copulas," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 27-55.
    9. Hu, Genhua & Fan, Gang-Zhi, 2022. "Empirical evidence of risk contagion across regional housing markets in China," Economic Modelling, Elsevier, vol. 115(C).
    10. Anubha Goel & Aparna Mehra, 2019. "Analyzing Contagion Effect in Markets During Financial Crisis Using Stochastic Autoregressive Canonical Vine Model," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 921-950, March.
    11. Henryk Gurgul & Artur Machno, 2014. "The optimal portfolio under VaR and ES," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(2), pages 59-79.
    12. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    13. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    14. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    15. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    16. Julien Chevallier & Florian Ielpo, 2013. "Volatility spillovers in commodity markets," Applied Economics Letters, Taylor & Francis Journals, vol. 20(13), pages 1211-1227, September.
    17. Chia-Hsun Hsieh & Shian-Chang Huang, 2012. "Time-Varying Dependency and Structural Changes in Currency Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(2), pages 94-127, March.
    18. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    19. Wang Ruihua & Wang Hongjun, 2020. "Correlation Analysis of Stock Market and Fund Market Based on M-Copula-EGARCH-M-GED Model," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 240-252, June.
    20. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:506-:d:1747789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.