IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i9p471-d1731471.html
   My bibliography  Save this article

The Good, the Bad, and the Bankrupt: A Super-Efficiency DEA and LASSO Approach Predicting Corporate Failure

Author

Listed:
  • Ioannis Dokas

    (Department of Economics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece)

  • George Geronikolaou

    (Department of Economics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece)

  • Sofia Katsimardou

    (Department of Economics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece)

  • Eleftherios Spyromitros

    (Department of Economics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece)

Abstract

Corporate failure prediction remains a major topic in the literature. Numerous methodologies have been established for its assessment, while data envelopment analysis (DEA) has received particular attention. This study contributes to the literature, establishing a new approach in the construction process of prediction models based on the combination of logistic LASSO and an advanced version of data envelopment analysis (DEA). We adopt the modified slacks-based super-efficiency measure (modified super-SBM-DEA), following the “Worst practice frontier” approach, and focus on the selection process of predictive variables, implementing the logistic LASSO regression. A balanced sample with one-to-one matching between forty-five firms that filed for reorganization under U.S. bankruptcy law during the period 2014–2020 and forty-five non-failed firms of a similar size from the U.S. energy economic sector has been used for the empirical analysis. The proposed methodology offers superior results in terms of corporate failure prediction accuracy. For the dynamic assessment of failure, Malmquist DEA has been implemented during the five fiscal years prior to the event of failure, offering insights into financial distress before the event of a default. The model outperforms alternatives by achieving higher overall prediction accuracy (85.6%), the better identification of failed firms (91.1%), and the improved classification of non-failed firms (80%). Compared to prior DEA-based models, it demonstrates superior predictive performance with lower Type I and Type II errors and higher sensitivity as well as specificity. These results highlight the model’s effectiveness as a reliable early warning tool for bankruptcy prediction.

Suggested Citation

  • Ioannis Dokas & George Geronikolaou & Sofia Katsimardou & Eleftherios Spyromitros, 2025. "The Good, the Bad, and the Bankrupt: A Super-Efficiency DEA and LASSO Approach Predicting Corporate Failure," JRFM, MDPI, vol. 18(9), pages 1-23, August.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:471-:d:1731471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/9/471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/9/471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doumpos, M. & Kosmidou, K. & Baourakis, G. & Zopounidis, C., 2002. "Credit risk assessment using a multicriteria hierarchical discrimination approach: A comparative analysis," European Journal of Operational Research, Elsevier, vol. 138(2), pages 392-412, April.
    2. Lee, Chia-Yen & Cai, Jia-Ying, 2020. "LASSO variable selection in data envelopment analysis with small datasets," Omega, Elsevier, vol. 91(C).
    3. Stephen A. Hillegeist & Elizabeth K. Keating & Donald P. Cram & Kyle G. Lundstedt, 2004. "Assessing the Probability of Bankruptcy," Review of Accounting Studies, Springer, vol. 9(1), pages 5-34, March.
    4. Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    2. Olawale Ogunrinde & Ekundayo Shittu, 2023. "Benchmarking performance of photovoltaic power plants in multiple periods," Environment Systems and Decisions, Springer, vol. 43(3), pages 489-503, September.
    3. Ane Elixabete Ripoll-Zarraga & José Luis Franco Miguel & Carmen Fullana Belda, 2025. "Visualisation of Data Envelopment Analysis in primary health services," Health Care Management Science, Springer, vol. 28(2), pages 207-233, June.
    4. Zhichao Wang & Bao Hoang Nguyen & Valentin Zelenyuk, 2024. "Performance analysis of hospitals in Australia and its peers: a systematic and critical review," Journal of Productivity Analysis, Springer, vol. 62(2), pages 139-173, October.
    5. Fernando A. F. Ferreira & Ronald W. Spahr & Irina F. M. D. Gavancha & Amali Çipi, 2013. "Readjusting trade-offs among criteria in internal ratings of credit-scoring: an empirical essay of risk analysis in mortgage loans," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(4), pages 715-740, September.
    6. Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
    7. József Vörös, 2024. "Some properties of the maximum loss on loan portfolios," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 155-176, March.
    8. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    9. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    10. Alda A. Henriques & Milton Fontes & Ana S. Camanho & Giovanna D’Inverno & Pedro Amorim & Jaime Gabriel Silva, 2022. "Performance evaluation of problematic samples: a robust nonparametric approach for wastewater treatment plants," Annals of Operations Research, Springer, vol. 315(1), pages 193-220, August.
    11. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    12. Angeliki Papana & Anastasia Spyridou, 2020. "Bankruptcy Prediction: The Case of the Greek Market," Forecasting, MDPI, vol. 2(4), pages 1-21, December.
    13. Zhiqiang Liao, 2024. "Variable selection in convex nonparametric least squares via structured Lasso: An application to the Swedish electricity distribution networks," Papers 2409.01911, arXiv.org, revised Nov 2024.
    14. Evangelos C. Charalambakis, 2015. "On the Prediction of Corporate Financial Distress in the Light of the Financial Crisis: Empirical Evidence from Greek Listed Firms," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 22(3), pages 407-428, November.
    15. Dong, Hanjiang & Wang, Xiuyuan & Cui, Ziyu & Zhu, Jizhong & Li, Shenglin & Yu, Changyuan, 2025. "Machine learning-enhanced Data Envelopment Analysis via multi-objective variable selection for benchmarking combined electricity distribution performance," Energy Economics, Elsevier, vol. 143(C).
    16. Fernando A. F. Ferreira & Ieva Meidutė-Kavaliauskienė & Edmundas K. Zavadskas & Marjan S. Jalali & Sandra M. J. Catarino, 2019. "A Judgment-Based Risk Assessment Framework for Consumer Loans," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 7-33, January.
    17. Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
    18. Bao Hoang Nguyen & Valentin Zelenyuk, 2021. "Aggregation of Outputs and Inputs for DEA Analysis of Hospital Efficiency: Economics, Operations Research and Data Science Perspectives," International Series in Operations Research & Management Science, in: Joe Zhu & Vincent Charles (ed.), Data-Enabled Analytics, pages 123-158, Springer.
    19. Marco Corazza & Giovanni Fasano & Stefania Funari & Riccardo Gusso, 2021. "MURAME parameter setting for creditworthiness evaluation: data-driven optimization," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 295-339, June.
    20. Silvia Angilella & Sebastiano Mazz`u, 2013. "The Financing of Innovative SMEs: a multicriteria credit rating model," Papers 1308.0889, arXiv.org, revised Jun 2014.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:471-:d:1731471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.