IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i5p189-d1387671.html
   My bibliography  Save this article

Downside Risk in Australian and Japanese Stock Markets: Evidence Based on the Expectile Regression

Author

Listed:
  • Kohei Marumo

    (Faclty of Economics, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan)

  • Steven Li

    (Graduate School of Business and Law (GSBL), RMIT University Australia, Melbourne 3000, Australia)

Abstract

The expectile-based Value at Risk (EVaR) has gained popularity as it is more sensitive to the magnitude of extreme losses than the conventional quantile-based VaR (QVaR). This paper applies the expectile regression approach to evaluate the EVaR of stock market indices of Australia and Japan. We use an expectile regression model that considers lagged returns and common risk factors to calculate the EVaR for each stock market and to evaluate the interdependence of downside risk between the two markets. Our findings suggest that both Australian and Japanese stock markets are affected by their past development and the international stock markets. Additionally, ASX 200 index has significant impact on Nikkei 225 in terms of downside tail risk, while the impact of Nikkei 225 on ASX is not significant.

Suggested Citation

  • Kohei Marumo & Steven Li, 2024. "Downside Risk in Australian and Japanese Stock Markets: Evidence Based on the Expectile Regression," JRFM, MDPI, vol. 17(5), pages 1-17, May.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:5:p:189-:d:1387671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/5/189/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/5/189/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 477-492.
    2. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    3. Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
    4. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    5. Belkacem Abdous & Bruno Remillard, 1995. "Relating quantiles and expectiles under weighted-symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 371-384, June.
    6. Anjum, Hassan & Malik, Farooq, 2020. "Forecasting risk in the US Dollar exchange rate under volatility shifts," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. Gilbert W. Bassett Jr Bassett & Roger Koenker & Gregory Kordas, 2004. "Pessimistic portfolio allocation and Choquet expected utility," CeMMAP working papers 09/04, Institute for Fiscal Studies.
    8. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Cathy W.S. & Hsu, Hsiao-Yun & Watanabe, Toshiaki, 2023. "Tail risk forecasting of realized volatility CAViaR models," Finance Research Letters, Elsevier, vol. 51(C).
    2. Jiang, Yifu & Olmo, Jose & Atwi, Majed, 2024. "Dynamic robust portfolio selection under market distress," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    3. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    4. Saissi Hassani, Samir & Dionne, Georges, 2021. "The New International Regulation of Market Risk: Roles of VaR and CVaR in Model Validation," Working Papers 21-1, HEC Montreal, Canada Research Chair in Risk Management.
    5. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    6. J. Christopher Westland, 2015. "Economics of eBay’s buyer protection plan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-20, December.
    7. Weidong Lin & Jose Olmo & Abderrahim Taamouti, 2022. "Portfolio Selection Under Systemic Risk," Working Papers 202208, University of Liverpool, Department of Economics.
    8. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    9. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    10. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    11. Alexandre Street, 2010. "On the Conditional Value-at-Risk probability-dependent utility function," Theory and Decision, Springer, vol. 68(1), pages 49-68, February.
    12. Mengting Li & Qifa Xu & Cuixia Jiang & Qinna Zhao, 2023. "The role of tail network topological characteristic in portfolio selection: A TNA‐PMC model," International Review of Finance, International Review of Finance Ltd., vol. 23(1), pages 37-57, March.
    13. Xu, Qifa & Zhou, Yingying & Jiang, Cuixia & Yu, Keming & Niu, Xufeng, 2016. "A large CVaR-based portfolio selection model with weight constraints," Economic Modelling, Elsevier, vol. 59(C), pages 436-447.
    14. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    15. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2022. "Extremile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1579-1586, September.
    16. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    17. Sungchul Hong & Jong-June Jeon, 2023. "Uniform Pessimistic Risk and its Optimal Portfolio," Papers 2303.07158, arXiv.org, revised May 2024.
    18. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2016. "Downside risk and stock returns: An empirical analysis of the long-run and short-run dynamics from the G-7 Countries," SFB 649 Discussion Papers 2016-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    20. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:5:p:189-:d:1387671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.