A Hybrid Deep Learning Approach for Crude Oil Price Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ana Lazcano & Miguel A. Jaramillo-Morán & Julio E. Sandubete, 2024. "Back to Basics: The Power of the Multilayer Perceptron in Financial Time Series Forecasting," Mathematics, MDPI, vol. 12(12), pages 1-18, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
- Jha, Nimish & Kumar Tanneru, Hemanth & Palla, Sridhar & Hussain Mafat, Iradat, 2024. "Multivariate analysis and forecasting of the crude oil prices: Part I – Classical machine learning approaches," Energy, Elsevier, vol. 296(C).
- Wang, Bin & Wang, Jun, 2021. "Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and RIF-based algorithm," Energy, Elsevier, vol. 216(C).
- Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
- A. Usha Ruby & J. George Chellin Chandran & B. N. Chaithanya & T. J. Swasthika Jain & Renuka Patil, 2024. "Effective Crude Oil Prediction Using CHS-EMD Decomposition and PS-RNN Model," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1295-1314, August.
- Njud S. Alharbi & Hadi Jahanshahi & Qijia Yao & Stelios Bekiros & Irene Moroz, 2023. "Enhanced Classification of Heartbeat Electrocardiogram Signals Using a Long Short-Term Memory–Convolutional Neural Network Ensemble: Paving the Way for Preventive Healthcare," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
- Haoyang Cao & Haotian Gu & Xin Guo & Mathieu Rosenbaum, 2023. "Risk of Transfer Learning and its Applications in Finance," Papers 2311.03283, arXiv.org.
- Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Yu-Wei Chen & Chui-Yu Chiu & Mu-Chun Hsiao, 2021. "An Auxiliary Index for Reducing Brent Crude Investment Risk—Evaluating the Price Relationships between Brent Crude and Commodities," Sustainability, MDPI, vol. 13(9), pages 1-45, April.
- Qian, Fanyue & Gao, Weijun & Yang, Yongwen & Yu, Dan, 2020. "Potential analysis of the transfer learning model in short and medium-term forecasting of building HVAC energy consumption," Energy, Elsevier, vol. 193(C).
- Ikhlaas Gurrib & Firuz Kamalov & Elgilani E. Alshareif, 2022. "High Frequency Return and Risk Patterns in U.S. Sector ETFs during COVID-19," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 441-456, September.
- Haithem Awijen & Hachmi Ben Ameur & Zied Ftiti & Waël Louhichi, 2025. "Forecasting oil price in times of crisis: a new evidence from machine learning versus deep learning models," Annals of Operations Research, Springer, vol. 345(2), pages 979-1002, February.
- Kakade, Kshitij & Jain, Ishan & Mishra, Aswini Kumar, 2022. "Value-at-Risk forecasting: A hybrid ensemble learning GARCH-LSTM based approach," Resources Policy, Elsevier, vol. 78(C).
- Simsek, Ahmed Ihsan & Bulut, Emre & Gur, Yunus Emre & Gültekin Tarla, Esma, 2024. "A novel approach to Predict WTI crude spot oil price: LSTM-based feature extraction with Xgboost Regressor," Energy, Elsevier, vol. 309(C).
- Kamrul Hasan Tuhin & Ashadun Nobi & Mahmudul Hasan Rakib & Jae Woo Lee, 2025. "Long short-term memory autoencoder based network of financial indices," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
- Göncü, Ahmet & Kuzubaş, Tolga U. & Saltoğlu, Burak, 2024. "Predicting oil prices: A comparative analysis of machine learning and image recognition algorithms for trend prediction," Finance Research Letters, Elsevier, vol. 67(PB).
- Chao Deng & Liang Ma & Taishan Zeng, 2021. "Crude Oil Price Forecast Based on Deep Transfer Learning: Shanghai Crude Oil as an Example," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
- Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
- Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
More about this item
Keywords
crude oil price prediction; hybrid deep learning; convolution neural networks; long short-term memory networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:12:p:503-:d:1294853. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.