IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p138-d1011463.html
   My bibliography  Save this article

Spatial and Temporal Volatility of PM2.5, PM10 and PM10-Bound B[a]P Concentrations and Assessment of the Exposure of the Population of Silesia in 2018–2021

Author

Listed:
  • Dorota Kaleta

    (Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland)

  • Barbara Kozielska

    (Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland)

Abstract

Air pollution both indoors and outdoors is a major cause of various diseases and premature deaths. Negative health effects are more frequently observed in a number of European countries characterized by significant pollution. In Poland, especially in Upper Silesia, the most serious problem is the high concentration of particulate matter (PM) and PM10-bound benzo[a]pyrene (B[a]P). The main source of these two pollutants is so-called “low emissions” associated with the burning of solid fuels mainly in domestic boilers and liquid fuels in road traffic. This study examined the variability in the PM and PM10-bound B[a]P concentrations and their relationships with meteorological parameters, i.e., atmospheric pressure, air temperature and wind speed, in 2018–2021 at 11 monitoring stations. In many Silesian cities, the average annual concentrations of PM10, PM2.5 and B[a]P were much higher than those recorded in other European countries. At each station, the average daily PM10 concentrations were exceeded on 12 to 126 days a year. Taking into account the WHO recommendation for PM2.5, the highest recorded average daily concentration exceeded the permissible level by almost 40 times. The same relationships were observed in all measurement years: PM10 concentrations were negatively correlated with air temperature (R = −0.386) and wind speed (R = −0.614). The highest concentrations were observed in the temperature range from −15 °C to −5 °C, when the wind speed did not exceed 0.5 m·s −1 . The calculated lifetime cancer risk (LCR) associated with the exposure to B[a]P in the Silesian Voivodeship suggested 30–429 cases per 1 million people in the heating season depending on the scenario used for the calculations (IRIS, EPA or WHO).

Suggested Citation

  • Dorota Kaleta & Barbara Kozielska, 2022. "Spatial and Temporal Volatility of PM2.5, PM10 and PM10-Bound B[a]P Concentrations and Assessment of the Exposure of the Population of Silesia in 2018–2021," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:138-:d:1011463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordana Pehnec & Ivana Jakovljević, 2018. "Carcinogenic Potency of Airborne Polycyclic Aromatic Hydrocarbons in Relation to the Particle Fraction Size," IJERPH, MDPI, vol. 15(11), pages 1-25, November.
    2. Małgorzata Kowalska & Michał Skrzypek & Michał Kowalski & Josef Cyrys & Niewiadomska Ewa & Elżbieta Czech, 2019. "The Relationship between Daily Concentration of Fine Particulate Matter in Ambient Air and Exacerbation of Respiratory Diseases in Silesian Agglomeration, Poland," IJERPH, MDPI, vol. 16(7), pages 1-10, March.
    3. Primc, Kaja & Slabe-Erker, Renata & Majcen, Boris, 2019. "Constructing energy poverty profiles for an effective energy policy," Energy Policy, Elsevier, vol. 128(C), pages 727-734.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas, Khizar & Li, Shixiang & Xu, Deyi & Baz, Khan & Rakhmetova, Aigerim, 2020. "Do socioeconomic factors determine household multidimensional energy poverty? Empirical evidence from South Asia," Energy Policy, Elsevier, vol. 146(C).
    2. Ivana Jakovljević & Marija Dvoršćak & Karla Jagić & Darija Klinčić, 2022. "Polycyclic Aromatic Hydrocarbons in Indoor Dust in Croatia: Levels, Sources, and Human Health Risks," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
    3. Leticia dos Santos Benso Maciel & Benedito Donizeti Bonatto & Hector Arango & Lucas Gustavo Arango, 2020. "Evaluating Public Policies for Fair Social Tariffs of Electricity in Brazil by Using an Economic Market Model," Energies, MDPI, vol. 13(18), pages 1-20, September.
    4. Shuchen Cong & Destenie Nock & Yueming Lucy Qiu & Bo Xing, 2022. "Unveiling hidden energy poverty using the energy equity gap," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Belaïd, Fateh, 2022. "Mapping and understanding the drivers of fuel poverty in emerging economies: The case of Egypt and Jordan," Energy Policy, Elsevier, vol. 162(C).
    6. Mario Lovrić & Mario Antunović & Iva Šunić & Matej Vuković & Simonas Kecorius & Mark Kröll & Ivan Bešlić & Ranka Godec & Gordana Pehnec & Bernhard C. Geiger & Stuart K. Grange & Iva Šimić, 2022. "Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia," IJERPH, MDPI, vol. 19(11), pages 1-16, June.
    7. Ivana Jakovljević & Zdravka Sever Štrukil & Ranka Godec & Ivan Bešlić & Silvije Davila & Mario Lovrić & Gordana Pehnec, 2020. "Pollution Sources and Carcinogenic Risk of PAHs in PM 1 Particle Fraction in an Urban Area," IJERPH, MDPI, vol. 17(24), pages 1-21, December.
    8. Yunhui Zhao & Xinyue Wu & Jian Zhang, 2022. "Analysis of the Paths Affecting Corporate Green Innovation in Resource-Based Cities: A Fuzzy-Set QCA Approach," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    9. Pedro Macedo & Mara Madaleno & Victor Moutinho, 2022. "A New Composite Indicator for Assessing Energy Poverty Using Normalized Entropy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(3), pages 1139-1163, October.
    10. Wang, Qiang & Kwan, Mei-Po & Fan, Jie & Lin, Jian, 2021. "Racial disparities in energy poverty in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Meili Zhang & Shi Yin, 2023. "Can China’s Digital Economy and Green Economy Achieve Coordinated Development?," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
    12. Lan, Jing & Khan, Sufyan Ullah & Sadiq, Muhammad & Chien, Fengsheng & Baloch, Zulfiqar Ali, 2022. "Evaluating energy poverty and its effects using multi-dimensional based DEA-like mathematical composite indicator approach: Findings from Asia," Energy Policy, Elsevier, vol. 165(C).
    13. Belaïd, Fateh & Flambard, Véronique, 2023. "Impacts of income poverty and high housing costs on fuel poverty in Egypt: An empirical modeling approach," Energy Policy, Elsevier, vol. 175(C).
    14. Lilia Karpinska & Sławomir Śmiech, 2021. "Escaping Energy Poverty: A Comparative Analysis of 17 European Countries," Energies, MDPI, vol. 14(18), pages 1-16, September.
    15. Silvia Perez-Bezos & Anna Figueroa-Lopez & Matxalen Etxebarria-Mallea & Xabat Oregi & Rufino Javier Hernandez-Minguillon, 2022. "Assessment of Social Housing Energy and Thermal Performance in Relation to Occupants’ Behaviour and COVID-19 Influence—A Case Study in the Basque Country, Spain," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
    16. Xue, Yan & Hu, Dongmei & Irfan, Muhammad & Wu, Haitao & Hao, Yu, 2023. "Natural resources policy making through finance? The role of green finance on energy resources poverty," Resources Policy, Elsevier, vol. 85(PA).
    17. Dogan, Eyup & Madaleno, Mara & Taskin, Dilvin, 2021. "Which households are more energy vulnerable? Energy poverty and financial inclusion in Turkey," Energy Economics, Elsevier, vol. 99(C).
    18. A. S. M. Monjurul Hasan & Rakib Hossain & Rashedul Amin Tuhin & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Empirical Investigation of Barriers and Driving Forces for Efficient Energy Management Practices in Non-Energy-Intensive Manufacturing Industries of Bangladesh," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    19. Keyu Chen & Chao Feng, 2022. "Linking Housing Conditions and Energy Poverty: From a Perspective of Household Energy Self-Restriction," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    20. Weigert, Andreas & Hopf, Konstantin & Günther, Sebastian A. & Staake, Thorsten, 2022. "Heat pump inspections result in large energy savings when a pre-selection of households is performed: A promising use case of smart meter data," Energy Policy, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:138-:d:1011463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.