IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p11848-d919470.html
   My bibliography  Save this article

Polycyclic Aromatic Hydrocarbons in Indoor Dust in Croatia: Levels, Sources, and Human Health Risks

Author

Listed:
  • Ivana Jakovljević

    (Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
    These authors contributed equally to this work.)

  • Marija Dvoršćak

    (Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
    These authors contributed equally to this work.)

  • Karla Jagić

    (Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia)

  • Darija Klinčić

    (Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia)

Abstract

Compounds that contribute to indoor pollution are regularly investigated due to the fact that people spend most of their time indoors. Worldwide investigations have shown that polycyclic aromatic hydrocarbons (PAHs) are present in indoor dust, but to the best of our knowledge, this paper reports for the first time the presence of PAHs in Croatian households. Eleven PAHs were analysed in house dust samples collected in the city of Zagreb and surroundings (N = 66). Their possible indoor sources and the associated health risks were assessed. Total mass fraction of detected PAHs ranged from 92.9 ng g −1 to 1504.1 ng g −1 (median 466.8 ng g −1 ), whereby four-ring compounds, Flu and Pyr, contributed the most. DahA was the only compound that did not show statistically significantly positive correlation with other analysed PAHs, indicating that it originated from different sources. Based on diagnostic ratios and principal component analysis (PCA), mixed sources contributed to PAHs levels present in Croatian households. Although our results indicate that Croatian house dusts are weakly polluted with PAHs, total ILCR values calculated for children and adults revealed that people exposed to the highest mass fractions of PAHs measured in this area are at elevated cancer risk.

Suggested Citation

  • Ivana Jakovljević & Marija Dvoršćak & Karla Jagić & Darija Klinčić, 2022. "Polycyclic Aromatic Hydrocarbons in Indoor Dust in Croatia: Levels, Sources, and Human Health Risks," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:11848-:d:919470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/11848/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/11848/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordana Pehnec & Ivana Jakovljević, 2018. "Carcinogenic Potency of Airborne Polycyclic Aromatic Hydrocarbons in Relation to the Particle Fraction Size," IJERPH, MDPI, vol. 15(11), pages 1-25, November.
    2. Sultan Hassan Alamri & Nadeem Ali & Hussain Mohammed Salem Ali Albar & Muhammad Imtiaz Rashid & Nisreen Rajeh & Majdy Mohammed Ali Qutub & Govindan Malarvannan, 2021. "Polycyclic Aromatic Hydrocarbons in Indoor Dust Collected during the COVID-19 Pandemic Lockdown in Saudi Arabia: Status, Sources and Human Health Risks," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    3. Qin Yang & Huaguo Chen & Baizhan Li, 2015. "Polycyclic Aromatic Hydrocarbons (PAHs) in Indoor Dusts of Guizhou, Southwest of China: Status, Sources and Potential Human Health Risk," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    2. Mohamed Hamza EL-Saeid & Abdulaziz G. Alghamdi & Abdulhakim Jari Alzahrani, 2023. "Impact of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) of Falling Dust in Urban Area Settings: Status, Chemical Composition, Sources and Potential Human Health Risks," IJERPH, MDPI, vol. 20(2), pages 1-15, January.
    3. Mansour A. Alghamdi & Salwa K. Hassan & Noura A. Alzahrani & Marwan Y. Al Sharif & Mamdouh I. Khoder, 2020. "Classroom Dust-Bound Polycyclic Aromatic Hydrocarbons in Jeddah Primary Schools, Saudi Arabia: Level, Characteristics and Health Risk Assessment," IJERPH, MDPI, vol. 17(8), pages 1-23, April.
    4. Dorota Kaleta & Barbara Kozielska, 2022. "Spatial and Temporal Volatility of PM2.5, PM10 and PM10-Bound B[a]P Concentrations and Assessment of the Exposure of the Population of Silesia in 2018–2021," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    5. Mario Lovrić & Mario Antunović & Iva Šunić & Matej Vuković & Simonas Kecorius & Mark Kröll & Ivan Bešlić & Ranka Godec & Gordana Pehnec & Bernhard C. Geiger & Stuart K. Grange & Iva Šimić, 2022. "Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia," IJERPH, MDPI, vol. 19(11), pages 1-16, June.
    6. Ivana Jakovljević & Zdravka Sever Štrukil & Ranka Godec & Ivan Bešlić & Silvije Davila & Mario Lovrić & Gordana Pehnec, 2020. "Pollution Sources and Carcinogenic Risk of PAHs in PM 1 Particle Fraction in an Urban Area," IJERPH, MDPI, vol. 17(24), pages 1-21, December.
    7. Yan Wang & Hao Zhang & Xuan Zhang & Pengchu Bai & Andrey Neroda & Vassily F. Mishukov & Lulu Zhang & Kazuichi Hayakawa & Seiya Nagao & Ning Tang, 2022. "PM-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in the Ambient Air of Vladivostok: Seasonal Variation, Sources, Health Risk Assessment and Long-Term Variability," IJERPH, MDPI, vol. 19(5), pages 1-13, March.
    8. Hao Zhang & Xuan Zhang & Yan Wang & Pengchu Bai & Kazuichi Hayakawa & Lulu Zhang & Ning Tang, 2022. "Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review," IJERPH, MDPI, vol. 19(7), pages 1-17, March.
    9. Elena Cristina Rada & Gianni Andreottola & Irina Aura Istrate & Paolo Viotti & Fabio Conti & Elena Romenovna Magaril, 2019. "Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT," IJERPH, MDPI, vol. 16(17), pages 1-11, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:11848-:d:919470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.