IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2572-d756471.html
   My bibliography  Save this article

Solid-State Fermentation of Chestnut Shells and Effect of Explanatory Variables in Predictive Saccharification Models

Author

Listed:
  • Paula A. Pinto

    (CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

  • Rui M. F. Bezerra

    (CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
    Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

  • Irene Fraga

    (CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
    Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

  • Carla Amaral

    (CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
    Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

  • Ana Sampaio

    (CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
    Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

  • Albino A. Dias

    (CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
    Department of Biology and Environment, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

Abstract

In this study, chestnut shells (CNS), a recalcitrant and low-value agro-industrial waste obtained during the peeling of Castanea sativa fruits, were subjected to solid-state fermentation by six white-rot fungal strains ( Irpex lacteus , Ganoderma resinaceum , Phlebia rufa , Bjerkandera adusta and two Trametes isolates). After being fermented, CNS was subjected to hydrolysis by a commercial enzymatic mix to evaluate the effect of fermentation in saccharification yield. After 48 h hydrolysis with 10 CMCase U mL −1 enzymatic mix, CNS fermented with both Trametes strains was recorded with higher saccharification yield (around 253 mg g −1 fermented CNS), representing 25% w / w increase in reducing sugars as compared to non-fermented controls. To clarify the relationships and general mechanisms of fungal fermentation and its impacts on substrate saccharification, the effects of some independent or explanatory variables in the production of reducing sugars were estimated by general predictive saccharification models. The variables considered were lignocellulolytic activities in fungal fermentation, CNS hydrolysis time, and concentration of enzymatic hydrolysis mix. Multiple linear regression analysis revealed a very high significant effect ( p < 0.0001) of fungal laccase and xylanase activities in the saccharification models, thus proving the key potential of these enzymes in CNS solid-state fermentation.

Suggested Citation

  • Paula A. Pinto & Rui M. F. Bezerra & Irene Fraga & Carla Amaral & Ana Sampaio & Albino A. Dias, 2022. "Solid-State Fermentation of Chestnut Shells and Effect of Explanatory Variables in Predictive Saccharification Models," IJERPH, MDPI, vol. 19(5), pages 1-10, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2572-:d:756471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    2. Alessandra Morana & Giuseppe Squillaci & Susana M. Paixão & Luís Alves & Francesco La Cara & Patrícia Moura, 2017. "Development of an Energy Biorefinery Model for Chestnut ( Castanea sativa Mill.) Shells," Energies, MDPI, vol. 10(10), pages 1-14, September.
    3. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    4. Joana M.C. Fernandes & Irene Fraga & Rose M.O.F. Sousa & Miguel A.M. Rodrigues & Ana Sampaio & Rui M.F. Bezerra & Albino A. Dias, 2020. "Pretreatment of Grape Stalks by Fungi: Effect on Bioactive Compounds, Fiber Composition, Saccharification Kinetics and Monosaccharides Ratio," IJERPH, MDPI, vol. 17(16), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Sunčica Beluhan & Katarina Mihajlovski & Božidar Šantek & Mirela Ivančić Šantek, 2023. "The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing," Energies, MDPI, vol. 16(19), pages 1-38, October.
    3. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    4. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Yao, Junwei & Xie, Xiaobao & Shi, Qingshan, 2021. "Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system," Renewable Energy, Elsevier, vol. 177(C), pages 853-858.
    6. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    7. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    8. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    9. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    11. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material," Energies, MDPI, vol. 12(2), pages 1-13, January.
    12. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    13. Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.
    14. Kang Hyun Lee & Soo Kweon Lee & Jeongho Lee & Seunghee Kim & Chulhwan Park & Seung Wook Kim & Hah Young Yoo, 2021. "Improvement of Enzymatic Glucose Conversion from Chestnut Shells through Optimization of KOH Pretreatment," IJERPH, MDPI, vol. 18(7), pages 1-13, April.
    15. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    17. Gigel Paraschiv & Mariana Ferdes & Mariana Ionescu & Georgiana Moiceanu & Bianca Stefania Zabava & Mirela Nicoleta Dinca, 2022. "Laccases—Versatile Enzymes Used to Reduce Environmental Pollution," Energies, MDPI, vol. 15(5), pages 1-31, March.
    18. Joana M.C. Fernandes & Irene Fraga & Rose M.O.F. Sousa & Miguel A.M. Rodrigues & Ana Sampaio & Rui M.F. Bezerra & Albino A. Dias, 2020. "Pretreatment of Grape Stalks by Fungi: Effect on Bioactive Compounds, Fiber Composition, Saccharification Kinetics and Monosaccharides Ratio," IJERPH, MDPI, vol. 17(16), pages 1-13, August.
    19. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    20. Yao, Fengpei & Shen, Fei & Wan, Xue & Hu, Changwei, 2020. "High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2572-:d:756471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.