IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p7003-d1256036.html
   My bibliography  Save this article

The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing

Author

Listed:
  • Sunčica Beluhan

    (Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia)

  • Katarina Mihajlovski

    (Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia)

  • Božidar Šantek

    (Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia)

  • Mirela Ivančić Šantek

    (Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

Bioethanol is the most widely used alternative transportation fuel to petrol. Bioethanol is considered a clean, renewable, and environmentally friendly fuel that can contribute to climate change mitigation, decreased environmental pollution, and enhanced energy security. Commercial bioethanol production is based on traditional agricultural crops such as corn, sugarcane, and sugarbeet, primarily used as food and feed. In order to meet the growing demand for this fuel and decrease competition in the food and biofuel sectors for the same feedstock, other raw materials and process technologies have been intensively studied. Lignocellulosic biomass is one of the most abundant renewable resources, with it being rich in compounds that could be processed into energy, transportation fuels, various chemical compounds, and diverse materials. Bioethanol production from lignocellulosic biomass has received substantial attention in recent decades. This review gives an overview of bioethanol production steps from lignocellulosic biomass and challenges in the production process. The following aspects of bioethanol production are covered here, including pretreatment methods, process strategies, strain development, ethanol isolation and purification, and technical hurdles.

Suggested Citation

  • Sunčica Beluhan & Katarina Mihajlovski & Božidar Šantek & Mirela Ivančić Šantek, 2023. "The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing," Energies, MDPI, vol. 16(19), pages 1-38, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:7003-:d:1256036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/7003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/7003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio D. Moreno & Elia Tomás-Pejó & Lisbeth Olsson & Cecilia Geijer, 2020. "Candida intermedia CBS 141442: A Novel Glucose/Xylose Co-Fermenting Isolate for Lignocellulosic Bioethanol Production," Energies, MDPI, vol. 13(20), pages 1-13, October.
    2. Tsapekos, P. & Kougias, P.G. & Egelund, H. & Larsen, U. & Pedersen, J. & Trénel, P. & Angelidaki, I., 2017. "Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses," Renewable Energy, Elsevier, vol. 111(C), pages 914-921.
    3. Seo, Dong-June & Takenaka, Azusa & Fujita, Hirotaka & Mochidzuki, Kazuhiro & Sakoda, Akiyoshi, 2018. "Practical considerations for a simple ethanol concentration from a fermentation broth via a single adsorptive process using molecular-sieving carbon," Renewable Energy, Elsevier, vol. 118(C), pages 257-264.
    4. Bhutto, Abdul Waheed & Qureshi, Khadija & Harijan, Khanji & Abro, Rashid & Abbas, Tauqeer & Bazmi, Aqeel Ahmed & Karim, Sadia & Yu, Guangren, 2017. "Insight into progress in pre-treatment of lignocellulosic biomass," Energy, Elsevier, vol. 122(C), pages 724-745.
    5. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    6. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    7. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    8. Park, Yong Cheol & Kim, Jun Seok, 2012. "Comparison of various alkaline pretreatment methods of lignocellulosic biomass," Energy, Elsevier, vol. 47(1), pages 31-35.
    9. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    10. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    11. Kunnakorn, D. & Rirksomboon, T. & Siemanond, K. & Aungkavattana, P. & Kuanchertchoo, N. & Chuntanalerg, P. & Hemra, K. & Kulprathipanja, S. & James, R.B. & Wongkasemjit, S., 2013. "Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water–ethanol separation," Renewable Energy, Elsevier, vol. 51(C), pages 310-316.
    12. Van Dyk, J.S. & Gama, R. & Morrison, D. & Swart, S. & Pletschke, B.I., 2013. "Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 521-531.
    13. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    14. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Božidar Matin & Ivan Brandić & Ana Matin & Josip Ištvanić & Alan Antonović, 2024. "Possibilities of Liquefied Spruce ( Picea abies ) and Oak ( Quercus robur ) Biomass as an Environmentally Friendly Additive in Conventional Phenol–Formaldehyde Resin Wood Adhesives," Energies, MDPI, vol. 17(17), pages 1-18, September.
    2. Asma Billateh & Benjamas Cheirsilp, 2024. "Efficient Biovalorization of Oil Palm Trunk Waste as a Low-Cost Nutrient Source for Bioethanol Production," Energies, MDPI, vol. 17(13), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    2. Bhatt, Arpit H. & Zhang, Yimin & Heath, Garvin, 2020. "Bio-oil co-processing can substantially contribute to renewable fuel production potential and meet air quality standards," Applied Energy, Elsevier, vol. 268(C).
    3. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.
    4. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    5. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    7. Carvalho, Ana Karine F. & Bento, Heitor B.S. & Izário Filho, Hélcio J. & de Castro, Heizir F., 2018. "Approaches to convert Mucor circinelloides lipid into biodiesel by enzymatic synthesis assisted by microwave irradiations," Renewable Energy, Elsevier, vol. 125(C), pages 747-754.
    8. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    9. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    10. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    11. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    14. Kalil Rahiman, M. & Santhoshkumar, S. & Subramaniam, D. & Avinash, A. & Pugazhendhi, Arivalagan, 2022. "Effects of oxygenated fuel pertaining to fuel analysis on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 239(PD).
    15. Joana M.C. Fernandes & Irene Fraga & Rose M.O.F. Sousa & Miguel A.M. Rodrigues & Ana Sampaio & Rui M.F. Bezerra & Albino A. Dias, 2020. "Pretreatment of Grape Stalks by Fungi: Effect on Bioactive Compounds, Fiber Composition, Saccharification Kinetics and Monosaccharides Ratio," IJERPH, MDPI, vol. 17(16), pages 1-13, August.
    16. Lee, Jechan & Choi, Dongho & Kwon, Eilhann E. & Ok, Yong Sik, 2017. "Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2," Energy, Elsevier, vol. 137(C), pages 412-418.
    17. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    18. Xiao He & Lianjun Wang & Anthony Lau, 2020. "Investigation of Steam Treatment on the Sorption Behavior of Rice Straw Pellets," Energies, MDPI, vol. 13(20), pages 1-9, October.
    19. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    20. Walter Stefanoni & Francesco Latterini & Javier Prieto Ruiz & Simone Bergonzoli & Consuelo Attolico & Luigi Pari, 2020. "Mechanical Harvesting of Camelina: Work Productivity, Costs and Seed Loss Evaluation," Energies, MDPI, vol. 13(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:7003-:d:1256036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.