IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p9805-d883724.html
   My bibliography  Save this article

Assessment of Magnetic Nanomaterials for Municipality Wastewater Treatment Using Biochemical Methane Potential (BMP) Tests

Author

Listed:
  • Gloria Amo-Duodu

    (Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4001, South Africa)

  • Emmanuel Kweinor Tetteh

    (Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4001, South Africa)

  • Sudesh Rathilal

    (Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4001, South Africa)

  • Martha Noro Chollom

    (Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4001, South Africa)

Abstract

Wastewater as a substrate potential for producing renewable energy in the form of biogas is gaining global attention. Herein, nanomaterials can be utilised as a nutrient source for microorganisms for anaerobic digestion activity. Therefore, this study explored the impact of seven different magnetic nanomaterials (MNMs) on the anaerobic digestion of wastewater via biochemical methane potential (BMP) tests for biogas production. The BMP assay was carried out with eight bioreactors, where each was charged with 50% wastewater and 30% activated sludge, leaving a headspace of 20%. Aside the control bioreactor, the other seven (7) bioreactors were dosed with 1.5 g of MNMs. This was operated under anaerobic conditions at a mesophilic temperature of 35 °C for 31 days. At the degree of 80% degradation of contaminants, the results that showed bioreactors charged with 1.5 g MNMs of TiO 2 photocatalyst composites were more effective than those constituting metallic composites, whereas the control achieved 65% degradation. Additionally, the bioreactor with magnetite (Fe 3 O 4 ) produced the highest cumulative biogas of 1172 mL/day. Kinetically, the modified Gompertz model favoured the cumulative biogas data obtained with a significant regression coefficient (R 2 ) close to one.

Suggested Citation

  • Gloria Amo-Duodu & Emmanuel Kweinor Tetteh & Sudesh Rathilal & Martha Noro Chollom, 2022. "Assessment of Magnetic Nanomaterials for Municipality Wastewater Treatment Using Biochemical Methane Potential (BMP) Tests," IJERPH, MDPI, vol. 19(16), pages 1-10, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:9805-:d:883724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/9805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/9805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2017. "Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure," Energy, Elsevier, vol. 120(C), pages 842-853.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    3. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    4. Grosser, Anna & Grobelak, Anna & Rorat, Agnieszka & Courtois, Pauline & Vandenbulcke, Franck & Lemière, Sébastien & Guyoneaud, Remy & Attard, Eleonore & Celary, Piotr, 2021. "Effects of silver nanoparticles on performance of anaerobic digestion of sewage sludge and associated microbial communities," Renewable Energy, Elsevier, vol. 171(C), pages 1014-1025.
    5. Wei, Jing & Hao, Xiaodi & van Loosdrecht, Mark C.M. & Li, Ji, 2018. "Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 16-26.
    6. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    7. Ma, Lei & Zhou, Lei & Mbadinga, Serge Maurice & Gu, Ji-Dong & Mu, Bo-Zhong, 2018. "Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters," Energy, Elsevier, vol. 147(C), pages 663-671.
    8. Bahare Salehi & Lijun Wang, 2022. "Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater," Energies, MDPI, vol. 15(15), pages 1-21, July.
    9. Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
    10. Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
    11. Gómez Camacho, Carlos E. & Romano, Francesco I. & Ruggeri, Bernardo, 2018. "Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°," Energy, Elsevier, vol. 159(C), pages 525-533.
    12. Iliana Dompara & Angeliki Maragkaki & Nikolaos Papastefanakis & Christina Floraki & Dimitra Vernardou & Thrassyvoulos Manios, 2023. "Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    13. Cerrillo, Míriam & Burgos, Laura & Ruiz, Beatriz & Barrena, Raquel & Moral-Vico, Javier & Font, Xavier & Sánchez, Antoni & Bonmatí, August, 2021. "In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 180(C), pages 372-382.
    14. Kumar, Vikas & Nabaterega, Resty & Khoei, Shiva & Eskicioglu, Cigdem, 2021. "Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. M. Samer & E. M. Abdelsalam & S. Mohamed & H. Elsayed & Y. Attia, 2022. "Impact of photoactivated cobalt oxide nanoparticles addition on manure and whey for biogas production through dry anaerobic co-digestion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7776-7793, June.
    16. Raquel Barrena & Javier Moral-Vico & Xavier Font & Antoni Sánchez, 2022. "Enhancement of Anaerobic Digestion with Nanomaterials: A Mini Review," Energies, MDPI, vol. 15(14), pages 1-11, July.
    17. M. Samer & O. Hijazi & E. M. Abdelsalam & A. El-Hussein & Y. A. Attia & I. H. Yacoub & H. Bernhardt, 2021. "Life cycle assessment of using laser treatment and nanomaterials to produce biogas through anaerobic digestion of slurry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14683-14696, October.
    18. Noonari, A.A. & Mahar, R.B. & Sahito, A.R. & Brohi, K.M., 2019. "Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield," Renewable Energy, Elsevier, vol. 133(C), pages 1046-1054.
    19. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Safaa Ragab & Mohamed A. El-Nemr & Antonio Pantaleo, 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe 2 O 3 NPs on Biogas Production from Red Algae Pterocladia capillacea," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    20. Zhang, Zengshuai & Guo, Liang & Wang, Yi & Zhao, Yangguo & She, Zonglian & Gao, Mengchun & Guo, Yiding, 2020. "Application of iron oxide (Fe3O4) nanoparticles during the two-stage anaerobic digestion with waste sludge: Impact on the biogas production and the substrate metabolism," Renewable Energy, Elsevier, vol. 146(C), pages 2724-2735.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:9805-:d:883724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.