IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp525-533.html
   My bibliography  Save this article

Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°

Author

Listed:
  • Gómez Camacho, Carlos E.
  • Romano, Francesco I.
  • Ruggeri, Bernardo

Abstract

Recent studies suggest that the supplementation of powdered Fe° generates a positive effect on anaerobic fermentation processes but the exact relationship between metals with biological systems has not been fully elucidated. Experimental tests on dark fermentation (DF) were carried out at different Fe° concentrations. The anaerobic corrosion (AC) of Fe° and the production of H2 through DF of Organic Waste Market (OWM) were tested separately, and subsequently DF tests with Fe° at 1 g/L and 2 g/L were carried out. A macroscopic dynamic study was conducted, using Röels approach based on relaxation times (τR) to establish whether interactions between AC and DF phenomena exist. Experimental bioH2 production and Fe° AC were fit by Gompertz and saturative models, respectively to estimate τR. The results of the macro-analysis suggest that both phenomena are concurrent, with τR of the same order of magnitude, generating a positive symbiotic effect. The experimental tests of hydrogen production via DF in presence of 2 g/L of Fe° showed an increase of 46% compared with the control tests, of amount of gas and a greater H2/CO2 ratio. The results suggest an enhancement of key enzymes activity due to the action of iron increasing bioH2 production.

Suggested Citation

  • Gómez Camacho, Carlos E. & Romano, Francesco I. & Ruggeri, Bernardo, 2018. "Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°," Energy, Elsevier, vol. 159(C), pages 525-533.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:525-533
    DOI: 10.1016/j.energy.2018.06.171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218312362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    2. Jouhara, H. & Czajczyńska, D. & Ghazal, H. & Krzyżyńska, R. & Anguilano, L. & Reynolds, A.J. & Spencer, N., 2017. "Municipal waste management systems for domestic use," Energy, Elsevier, vol. 139(C), pages 485-506.
    3. Güssow, Kerstin & Proelss, Alexander & Oschlies, Andreas & Rehdanz, Katrin & Rickels, Wilfried, 2010. "Ocean iron fertilization: Why further research is needed," Marine Policy, Elsevier, vol. 34(5), pages 911-918, September.
    4. Jensen, Ida Græsted & Skovsgaard, Lise, 2017. "The impact of CO2-costs on biogas usage," Energy, Elsevier, vol. 134(C), pages 289-300.
    5. Orecchini, Fabio & Bocci, Enrico, 2007. "Biomass to hydrogen for the realization of closed cycles of energy resources," Energy, Elsevier, vol. 32(6), pages 1006-1011.
    6. Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2017. "Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure," Energy, Elsevier, vol. 120(C), pages 842-853.
    7. Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2016. "Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry," Renewable Energy, Elsevier, vol. 87(P1), pages 592-598.
    8. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soares, Juliana Ferreira & Confortin, Tássia Carla & Todero, Izelmar & Mayer, Flávio Dias & Mazutti, Marcio Antonio, 2020. "Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    2. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    3. Bahare Salehi & Lijun Wang, 2022. "Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater," Energies, MDPI, vol. 15(15), pages 1-21, July.
    4. Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
    5. Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
    6. Iliana Dompara & Angeliki Maragkaki & Nikolaos Papastefanakis & Christina Floraki & Dimitra Vernardou & Thrassyvoulos Manios, 2023. "Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    7. Cerrillo, Míriam & Burgos, Laura & Ruiz, Beatriz & Barrena, Raquel & Moral-Vico, Javier & Font, Xavier & Sánchez, Antoni & Bonmatí, August, 2021. "In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 180(C), pages 372-382.
    8. Kumar, Vikas & Nabaterega, Resty & Khoei, Shiva & Eskicioglu, Cigdem, 2021. "Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. M. Samer & O. Hijazi & E. M. Abdelsalam & A. El-Hussein & Y. A. Attia & I. H. Yacoub & H. Bernhardt, 2021. "Life cycle assessment of using laser treatment and nanomaterials to produce biogas through anaerobic digestion of slurry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14683-14696, October.
    10. Noonari, A.A. & Mahar, R.B. & Sahito, A.R. & Brohi, K.M., 2019. "Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield," Renewable Energy, Elsevier, vol. 133(C), pages 1046-1054.
    11. Ma, Lei & Zhou, Lei & Ruan, Meng-Ya & Gu, Ji-Dong & Mu, Bo-Zhong, 2019. "Simultaneous methanogenesis and acetogenesis from the greenhouse carbon dioxide by an enrichment culture supplemented with zero-valent iron," Renewable Energy, Elsevier, vol. 132(C), pages 861-870.
    12. Abdelsalam, E. & Samer, M. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2018. "Influence of laser irradiation on rumen fluid for biogas production from dairy manure," Energy, Elsevier, vol. 163(C), pages 404-415.
    13. Antonio Jacintos Nieves & Gian Carlo Delgado Ramos, 2023. "Advancing the Application of a Multidimensional Sustainable Urban Waste Management Model in a Circular Economy in Mexico City," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    14. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    15. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Karamanev, Dimitre & Pupkevich, Victor & Penev, Kalin & Glibin, Vassili & Gohil, Jay & Vajihinejad, Vahid, 2017. "Biological conversion of hydrogen to electricity for energy storage," Energy, Elsevier, vol. 129(C), pages 237-245.
    18. Donatella Barisano & Giuseppe Canneto & Francesco Nanna & Antonio Villone & Emanuele Fanelli & Cesare Freda & Massimiliano Grieco & Andrea Lotierzo & Giacinto Cornacchia & Giacobbe Braccio & Vera Marc, 2022. "Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II," Energies, MDPI, vol. 15(13), pages 1-16, June.
    19. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Jadhav, Dipak A. & Ghosh Ray, Sreemoyee & Ghangrekar, Makarand M., 2017. "Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1022-1031.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:525-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.