IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10129-d889404.html
   My bibliography  Save this article

Characteristics and Risk Factors for Electric Scooter-Related Crashes and Injury Crashes among Scooter Riders: A Two-Phase Survey Study

Author

Listed:
  • Disi Tian

    (HumanFIRST Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA)

  • Andrew D. Ryan

    (Midwest Center for Occupational Health and Safety Education and Research Center, Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA)

  • Curtis M. Craig

    (HumanFIRST Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA)

  • Kelsey Sievert

    (HumanFIRST Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA)

  • Nichole L. Morris

    (HumanFIRST Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA)

Abstract

Electric scooters (or e-scooters) are among the most popular micromobility options that have experienced an enormous expansion in urban transportation systems across the world in recent years. Along with the increased usage of e-scooters, the increasing number of e-scooter-related injuries has also become an emerging global public health concern. However, little is known regarding the risk factors for e-scooter-related crashes and injury crashes. This study consisted of a two-phase survey questionnaire administered to a cohort of e-scooter riders ( n = 210), which obtained exposure information on riders’ demographics, riding behaviors (including infrastructure selection), helmet use, and other crash-related factors. The risk ratios of riders’ self-reported involvement in an e-scooter-related crash (i.e., any crash versus no crash) and injury crash (i.e., injury crash versus non-injury crash) were estimated across exposure subcategories using the Negative Binomial regression approach. Males and frequent users of e-scooters were associated with an increased risk of e-scooter-related crashes of any type. For the e-scooter-related injury crashes, more frequently riding on bike lanes (i.e., greater than 25% of the time), either protected or unprotected, was identified as a protective factor. E-scooter-related injury crashes were more likely to occur among females, who reported riding on sidewalks and non-paved surfaces more frequently. The study may help inform public policy regarding e-scooter legislation and prioritize efforts to establish suitable road infrastructure for improved e-scooter riding safety.

Suggested Citation

  • Disi Tian & Andrew D. Ryan & Curtis M. Craig & Kelsey Sievert & Nichole L. Morris, 2022. "Characteristics and Risk Factors for Electric Scooter-Related Crashes and Injury Crashes among Scooter Riders: A Two-Phase Survey Study," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10129-:d:889404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberica Domitilla Bozzi & Anne Aguilera, 2021. "Shared E-Scooters: A Review of Uses, Health and Environmental Impacts, and Policy Implications of a New Micro-Mobility Service," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    2. Owain James & J I Swiderski & John Hicks & Denis Teoman & Ralph Buehler, 2019. "Pedestrians and E-Scooters: An Initial Look at E-Scooter Parking and Perceptions by Riders and Non-Riders," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    3. Sanders, Rebecca L. & Branion-Calles, Michael & Nelson, Trisalyn A., 2020. "To scoot or not to scoot: Findings from a recent survey about the benefits and barriers of using E-scooters for riders and non-riders," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 217-227.
    4. William H. Greene, 1994. "Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models," Working Papers 94-10, New York University, Leonard N. Stern School of Business, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morteza Hossein Sabbaghian & David Llopis-Castelló & Alfredo García, 2023. "A Safe Infrastructure for Micromobility: The Current State of Knowledge," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    2. Elżbieta Macioszek & Maria Cieśla & Anna Granà, 2023. "Future Development of an Energy-Efficient Electric Scooter Sharing System Based on a Stakeholder Analysis Method," Energies, MDPI, vol. 16(1), pages 1-24, January.
    3. Kelsey Sievert & Madeleine Roen & Curtis M. Craig & Nichole L. Morris, 2023. "A Survey of Electric-Scooter Riders’ Route Choice, Safety Perception, and Helmet Use," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    4. Shiva Pourfalatoun & Jubaer Ahmed & Erika E. Miller, 2023. "Shared Electric Scooter Users and Non-Users: Perceptions on Safety, Adoption and Risk," Sustainability, MDPI, vol. 15(11), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Draženko Glavić & Ana Trpković & Marina Milenković & Sreten Jevremović, 2021. "The E-Scooter Potential to Change Urban Mobility—Belgrade Case Study," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    2. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    3. Mohammed Hamad Almannaa & Faisal Adnan Alsahhaf & Huthaifa I. Ashqar & Mohammed Elhenawy & Mahmoud Masoud & Andry Rakotonirainy, 2021. "Perception Analysis of E-Scooter Riders and Non-Riders in Riyadh, Saudi Arabia: Survey Outputs," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    4. Samira Dibaj & Aryan Hosseinzadeh & Miloš N. Mladenović & Robert Kluger, 2021. "Where Have Shared E-Scooters Taken Us So Far? A Review of Mobility Patterns, Usage Frequency, and Personas," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    5. Alberica Domitilla Bozzi & Anne Aguilera, 2021. "Shared E-Scooters: A Review of Uses, Health and Environmental Impacts, and Policy Implications of a New Micro-Mobility Service," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    6. Stefania Boglietti & Benedetto Barabino & Giulio Maternini, 2021. "Survey on e-Powered Micro Personal Mobility Vehicles: Exploring Current Issues towards Future Developments," Sustainability, MDPI, vol. 13(7), pages 1-34, March.
    7. Bretones, Alexandra & Marquet, Oriol, 2022. "Sociopsychological factors associated with the adoption and usage of electric micromobility. A literature review," Transport Policy, Elsevier, vol. 127(C), pages 230-249.
    8. Maximilian Heumann & Tobias Kraschewski & Tim Brauner & Lukas Tilch & Michael H. Breitner, 2021. "A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    9. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    10. Rui Baptista & Joana Mendonça, 2010. "Proximity to knowledge sources and the location of knowledge-based start-ups," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 45(1), pages 5-29, August.
    11. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    12. Christopher J. W. Zorn, 1998. "An Analytic and Empirical Examination of Zero-Inflated and Hurdle Poisson Specifications," Sociological Methods & Research, , vol. 26(3), pages 368-400, February.
    13. Agrawal, Ajay & Cockburn, Iain, 2003. "The anchor tenant hypothesis: exploring the role of large, local, R&D-intensive firms in regional innovation systems," International Journal of Industrial Organization, Elsevier, vol. 21(9), pages 1227-1253, November.
    14. Cao, Zhejing & Zhang, Xiaohu & Chua, Kelman & Yu, Honghai & Zhao, Jinhua, 2021. "E-scooter sharing to serve short-distance transit trips: A Singapore case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 177-196.
    15. Timothy C. Haab, "undated". "A Utility Based Repeated Discrete Choice Model of Consumer Demand," Working Papers 9611, East Carolina University, Department of Economics.
    16. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    17. Boubaker, Sabri & Labégorre, Florence, 2008. "Ownership structure, corporate governance and analyst following: A study of French listed firms," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 961-976, June.
    18. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    19. Simen G. Enger & Fulvio Castellacci, 2016. "Who gets Horizon 2020 research grants? Propensity to apply and probability to succeed in a two-step analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1611-1638, December.
    20. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10129-:d:889404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.