IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i5p1604-d327403.html
   My bibliography  Save this article

Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice

Author

Listed:
  • Xizhuo Zhang

    (Department of Mechanical Engineering, School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China)

  • Longfei Zhang

    (Department of Mechanical Engineering, School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China)

  • Yujun Yuan

    (Department of Mechanical Engineering, School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China)

  • Qiang Zhai

    (Department of Mechanical Engineering, School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China)

Abstract

Recent decades have witnessed wave and tidal energy technology receiving considerable attention because of their low carbon emissions during electricity production. However, indirect emissions from their entire life cycle should not be ignored. Therefore, life cycle assessment (LCA) has been widely applied as a useful approach to systematically evaluate the environmental performance of wave and tidal energy technologies. This study reviews recent LCA studies on wave and tidal energy systems for stakeholders to understand current status of methodological practice and associated inherent limitations and reveal future research needs for application of LCA on wave and tidal technologies. The conformance of the selected LCAs to ISO 14040 (2006) and 14044 (2006) are critically analyzed in strict accordance with the ISO stepwise methodologies, namely, goal and scope definition, life cycle inventory (LCI) analysis, as well as life cycle impact assessment (LCIA). Our systematically screening of these studies indicates that few of the selected studies are of strict conformance with ISO 14040 and 14044 standards, which makes the results unreliable and thus further reduces the confidence of interested stakeholders. Further, our review indicates that current LCA practice on wave and tidal energies is lacking consideration of temporal variations, which should be addressed in future research, as it causes inaccuracy and uncertainties.

Suggested Citation

  • Xizhuo Zhang & Longfei Zhang & Yujun Yuan & Qiang Zhai, 2020. "Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice," IJERPH, MDPI, vol. 17(5), pages 1-13, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1604-:d:327403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/5/1604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/5/1604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Zhai & Linsen Zhu & Shizhou Lu, 2018. "Life Cycle Assessment of a Buoy-Rope-Drum Wave Energy Converter," Energies, MDPI, vol. 11(9), pages 1-15, September.
    2. Riva, Angelo & D'Angelosante, Simona & Trebeschi, Carla, 2006. "Natural gas and the environmental results of life cycle assessment," Energy, Elsevier, vol. 31(1), pages 138-148.
    3. J. W. Owens, 1997. "Life‐Cycle Assessment in Relation to Risk Assessment: An Evolving Perspective," Risk Analysis, John Wiley & Sons, vol. 17(3), pages 359-365, June.
    4. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2016. "Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options," Energy, Elsevier, vol. 112(C), pages 715-728.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graciela Rivera & Angélica Felix & Edgar Mendoza, 2020. "A Review on Environmental and Social Impacts of Thermal Gradient and Tidal Currents Energy Conversion and Application to the Case of Chiapas, Mexico," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    2. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    3. Su, Shu & Ju, Jingyi & Guo, Qiyue & Li, Xiaodong & Zhu, Yimin, 2023. "A temporally dynamic model for regional carbon impact assessment based on city information modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Emilio García & Antonio Correcher & Eduardo Quiles & Fernando Tamarit & Francisco Morant, 2022. "Control and Supervision Requirements for Floating Hybrid Generator Systems," IJERPH, MDPI, vol. 19(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Benvenutti, Lívia M. & Uriona-Maldonado, Mauricio & Campos, Lucila M.S., 2019. "The impact of CO2 mitigation policies on light vehicle fleet in Brazil," Energy Policy, Elsevier, vol. 126(C), pages 370-379.
    3. Pennock, Shona & Vanegas-Cantarero, María M. & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Life cycle assessment of a point-absorber wave energy array," Renewable Energy, Elsevier, vol. 190(C), pages 1078-1088.
    4. Oliver-Solà, Jordi & Gabarrell, Xavier & Rieradevall, Joan, 2009. "Environmental impacts of natural gas distribution networks within urban neighborhoods," Applied Energy, Elsevier, vol. 86(10), pages 1915-1924, October.
    5. Onat, Nuri C. & Noori, Mehdi & Kucukvar, Murat & Zhao, Yang & Tatari, Omer & Chester, Mikhail, 2017. "Exploring the suitability of electric vehicles in the United States," Energy, Elsevier, vol. 121(C), pages 631-642.
    6. Jeroen B. Guinée & Arjan de Koning & Reinout Heijungs, 2022. "Life cycle assessment‐based Absolute Environmental Sustainability Assessment is also relative," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 673-682, June.
    7. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    8. Shen, Yung-Shuen & Huang, Guan-Ting & Chang-Chien, Chien-Li & Huang, Lance Hongwei & Kuo, Chien-Hung & Hu, Allen H., 2023. "The impact of passenger electric vehicles on carbon reduction and environmental impact under the 2050 net zero policy in Taiwan," Energy Policy, Elsevier, vol. 183(C).
    9. Yujun Yuan & Tong Li & Qiang Zhai, 2020. "Life Cycle Impact Assessment of Garbage-Classification Based Municipal Solid Waste Management Systems: A Comparative Case Study in China," IJERPH, MDPI, vol. 17(15), pages 1-20, July.
    10. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    11. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.
    12. Sayyed Shoaib-ul-Hasan & Malvina Roci & Farazee M. A. Asif & Niloufar Salehi & Amir Rashid, 2021. "Analyzing Temporal Variability in Inventory Data for Life Cycle Assessment: Implications in the Context of Circular Economy," Sustainability, MDPI, vol. 13(1), pages 1-12, January.
    13. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    14. Esteban Lopez-Arboleda & Alfonso T. Sarmiento & Laura M. Cardenas, 2019. "Systematic Review of Integrated Sustainable Transportation Models for Electric Passenger Vehicle Diffusion," Sustainability, MDPI, vol. 11(9), pages 1-19, April.
    15. Cavalieri, Francesco, 2020. "Seismic risk assessment of natural gas networks with steady-state flow computation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    16. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Rizal Taufiq Fauzi & Patrick Lavoie & Luca Sorelli & Mohammad Davoud Heidari & Ben Amor, 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    18. Akbi, Amine & Yassaa, Noureddine & Boudjema, Rachid & Aliouat, Boualem, 2016. "A new method for cost of renewable energy production in Algeria: Integrate all benefits drawn from fossil fuel savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1150-1157.
    19. Murat Kucukvar & Khalel Ahmed Alawi & Galal M. Abdella & Muhammet Enis Bulak & Nuri C. Onat & Melih Bulu & Murat Yalçıntaş, 2021. "A frontier‐based managerial approach for relative sustainability performance assessment of the world's airports," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 89-107, January.
    20. Brkić, Dejan & Tanasković, Toma I., 2008. "Systematic approach to natural gas usage for domestic heating in urban areas," Energy, Elsevier, vol. 33(12), pages 1738-1753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1604-:d:327403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.