IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i1p132-d195231.html
   My bibliography  Save this article

Chemical Composition and Deposition Fluxes of Water-Soluble Inorganic Ions on Dry and Wet Deposition Samples in Wuhan, China

Author

Listed:
  • Jun Qin

    (School of Environmental Studies, China University of Geosciences, 388 Lu Mo Road, Wuhan 430074, China)

  • Yassin Mbululo

    (School of Environmental Studies, China University of Geosciences, 388 Lu Mo Road, Wuhan 430074, China
    Department of Geography and Environmental Studies, Solomon Mahlangu College of Science and Education, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania)

  • Muyi Yang

    (School of Environmental Studies, China University of Geosciences, 388 Lu Mo Road, Wuhan 430074, China)

  • Zhengxuan Yuan

    (School of Environmental Studies, China University of Geosciences, 388 Lu Mo Road, Wuhan 430074, China)

  • Fatuma Nyihirani

    (School of Environmental Studies, China University of Geosciences, 388 Lu Mo Road, Wuhan 430074, China
    Centre for Environment, Poverty and Sustainable Development, Mzumbe University, P.O. Box 83, Morogoro, Tanzania)

  • Xiang Zheng

    (School of Environmental Studies, China University of Geosciences, 388 Lu Mo Road, Wuhan 430074, China)

Abstract

Measurement of PM 2.5 concentration, dry and wet deposition of water-soluble inorganic ions (WSII) and their deposition flux was carried out. During sampling, a total number of 31 samples of PM 2.5 , five wet deposition samples and seven dry deposition samples were collected. The analyses results showed that the average concentration of PM 2.5 was 122.95 µg/m 3 whilst that of WSII was 51.63 µg/m 3 , equivalent to 42% of the total mass of PM 2.5 . The correlation coefficients between WSII in samples of PM 2.5 was significant (r = 0.50 and p -value of 0.0019). Ions of SO 4 2 − , NO 3 − , Cl − , and NH 4 + were dominant in the entire samples (PM 2.5 , dry and wet depositions), nevertheless, the average concentration of both SO 4 2 − and Cl − were below the China environmental quality standard for surface water. The ratio of dominant anions in wet deposition ( SO 4 2 − / NO 3 − ) was 1.59, whilst that for dry deposition ( SO 4 2 − / Cl − ) was 1.4, indicating that acidity was mainly derived from sulphate. In the case of dominant cations, the dry and wet deposition ratios ( Ca 2 + / NH 4 + ) were 1.36 and 1.37, respectively, suggesting the alkaline substances were mainly dominated by calcium salts. Days with higher recorded concentrations of PM 2.5 were accompanied by dry and warm boundary layer structure, weak low-level wind and strong inversion layer.

Suggested Citation

  • Jun Qin & Yassin Mbululo & Muyi Yang & Zhengxuan Yuan & Fatuma Nyihirani & Xiang Zheng, 2019. "Chemical Composition and Deposition Fluxes of Water-Soluble Inorganic Ions on Dry and Wet Deposition Samples in Wuhan, China," IJERPH, MDPI, vol. 16(1), pages 1-14, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:1:p:132-:d:195231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/1/132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/1/132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ru-Jin Huang & Yanlin Zhang & Carlo Bozzetti & Kin-Fai Ho & Jun-Ji Cao & Yongming Han & Kaspar R. Daellenbach & Jay G. Slowik & Stephen M. Platt & Francesco Canonaco & Peter Zotter & Robert Wolf & Sim, 2014. "High secondary aerosol contribution to particulate pollution during haze events in China," Nature, Nature, vol. 514(7521), pages 218-222, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Wenxiao & Lin, Chen & Chen, Wei & Hong, Jinglan & Chang, Jingcai & Dong, Yong & Zhang, Yanlu, 2017. "Environmental effect of current desulfurization technology on fly dust emission in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1-9.
    2. Yi Yang & Jie Li & Guobin Zhu & Qiangqiang Yuan, 2019. "Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM 2.5 in China During 1998–2016," IJERPH, MDPI, vol. 16(7), pages 1-24, March.
    3. Yana Jin & Henrik Andersson & Shiqiu Zhang, 2016. "Air Pollution Control Policies in China: A Retrospective and Prospects," IJERPH, MDPI, vol. 13(12), pages 1-22, December.
    4. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    5. Yu Zhang & Jiayu Wu & Chunyao Zhou & Qingyu Zhang, 2019. "Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    6. Hujia Zhao & Ke Gui & Yanjun Ma & Yangfeng Wang & Yaqiang Wang & Hong Wang & Yu Zheng & Lei Li & Lei Zhang & Yuqi Zhang & Huizheng Che & Xiaoye Zhang, 2022. "Multi-Year Variation of Ozone and Particulate Matter in Northeast China Based on the Tracking Air Pollution in China (TAP) Data," IJERPH, MDPI, vol. 19(7), pages 1-23, March.
    7. Ruiqing Ma & Yeyue Zhang & Yini Zhang & Xi Li & Zheng Ji, 2023. "The Relationship between the Transmission of Different SARS-CoV-2 Strains and Air Quality: A Case Study in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    8. Hongfeng Zhang & Lu Huang & Yan Zhu & Hongyun Si & Xu He, 2021. "Does Low-Carbon City Construction Improve Total Factor Productivity? Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    9. Han-Yin Sun & Ci-Wen Luo & Yun-Wei Chiang & Kun-Lin Yeh Yi-Ching Li & Yung-Chung Ho & Shiuan-Shinn Lee & Wen-Ying Chen & Chun-Jung Chen & Yu-Hsiang Kuan, 2021. "Association Between PM 2.5 Exposure Level and Primary Open-Angle Glaucoma in Taiwanese Adults: A Nested Case–control Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    10. Zhang, Dongyang, 2023. "Can environmental monitoring power transition curb corporate greenwashing behavior?," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 199-218.
    11. Ying Zhang & Shouming Chen & Yujia Li & Disney Leite Ramos, 2024. "Does Environmental Protection Law Bring about Greenwashing? Evidence from Heavy-Polluting Firms in China," Sustainability, MDPI, vol. 16(5), pages 1-20, February.
    12. Zhong, Yu-Xiu & Wang, Xin & Xu, Gang & Ning, Xinyu & Zhou, Lin & Tang, Wen & Wang, Ming-Hao & Wang, Tong & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler," Energy, Elsevier, vol. 275(C).
    13. Shr, Yau-Huo & Hsu, Wen & Hwang, Bing-Fang & Jung, Chau-Ren, 2023. "Air quality and risky behaviors on roads," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    14. Jie Yang & Pengfei Liu & Hongquan Song & Changhong Miao & Feng Wang & Yu Xing & Wenjie Wang & Xinyu Liu & Mengxin Zhao, 2021. "Effects of Anthropogenic Emissions from Different Sectors on PM 2.5 Concentrations in Chinese Cities," IJERPH, MDPI, vol. 18(20), pages 1-13, October.
    15. Kun Liu & Xuemin Liu & Zihao Wu, 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    16. Diyi Liu & Kun Cheng & Kevin Huang & Hui Ding & Tiantong Xu & Zhenni Chen & Yanqi Sun, 2022. "Visualization and Analysis of Air Pollution and Human Health Based on Cluster Analysis: A Bibliometric Review from 2001 to 2021," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    17. Eun-Min Cho & Hyung Jin Jeon & Dan Ki Yoon & Si Hyun Park & Hyung Jin Hong & Kil Yong Choi & Heun Woo Cho & Hyo Chang Cheon & Cheol Min Lee, 2019. "Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations," IJERPH, MDPI, vol. 16(8), pages 1-10, April.
    18. Deguang Li & Zhicheng Ding & Jianghuan Liu & Qiurui He & Hamad Naeem, 2022. "Exploring Spatiotemporal Dynamics of PM 2.5 Emission Based on Nighttime Light in China from 2012 to 2018," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    19. Aboubakar Gasirabo & Chen Xi & Baligira R. Hamad & Umwali Dufatanye Edovia, 2023. "A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda," Land, MDPI, vol. 12(9), pages 1-20, September.
    20. Qian Guo & Yuchen Zhao & Tao Xue & Junfeng Zhang & Xiaoli Duan, 2022. "Association of PM 2.5 and Its Chemical Compositions with Metabolic Syndrome: A Nationwide Study in Middle-Aged and Older Chinese Adults," IJERPH, MDPI, vol. 19(22), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:1:p:132-:d:195231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.