IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i14p2632-d250967.html
   My bibliography  Save this article

Investigation on the Injury Severity of Drivers in Rear-End Collisions Between Cars Using a Random Parameters Bivariate Ordered Probit Model

Author

Listed:
  • Feng Chen

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education Tongji University, Shanghai 201804, China)

  • Mingtao Song

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education Tongji University, Shanghai 201804, China)

  • Xiaoxiang Ma

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education Tongji University, Shanghai 201804, China)

Abstract

The existing studies on drivers’ injury severity include numerous statistical models that assess potential factors affecting the level of injury. These models should address specific concerns tailored to different crash characteristics. For rear-end crashes, potential correlation in injury severity may present between the two drivers involved in the same crash. Moreover, there may exist unobserved heterogeneity considering parameter effects, which may vary across both crashes and individuals. To address these concerns, a random parameters bivariate ordered probit model has been developed to examine factors affecting injury sustained by two drivers involved in the same rear-end crash between passenger cars. Taking both the within-crash correlation and unobserved heterogeneity into consideration, the proposed model outperforms the two separate ordered probit models with fixed parameters. The value of the correlation parameter demonstrates that there indeed exists significant correlation between two drivers’ injuries. Driver age, gender, vehicle, airbag or seat belt use, traffic flow, etc., are found to affect injury severity for both the two drivers. Some differences can also be found between the two drivers, such as the effect of light condition, crash season, crash position, etc. The approach utilized provides a possible use for dealing with similar injury severity analysis in future work.

Suggested Citation

  • Feng Chen & Mingtao Song & Xiaoxiang Ma, 2019. "Investigation on the Injury Severity of Drivers in Rear-End Collisions Between Cars Using a Random Parameters Bivariate Ordered Probit Model," IJERPH, MDPI, vol. 16(14), pages 1-12, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2632-:d:250967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/14/2632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/14/2632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abay, Kibrom A. & Paleti, Rajesh & Bhat, Chandra R., 2013. "The joint analysis of injury severity of drivers in two-vehicle crashes accommodating seat belt use endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 74-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Zhu & Zishuo Zhu & Jie Zhang & Chenxuan Yang, 2021. "Electric Bicyclist Injury Severity during Peak Traffic Periods: A Random-Parameters Approach with Heterogeneity in Means and Variances," IJERPH, MDPI, vol. 18(21), pages 1-19, October.
    2. B. Claus & L. Warlop, 2022. "The Car Cushion Hypothesis: Bigger Cars Lead to More Risk Taking—Evidence from Behavioural Data," Journal of Consumer Policy, Springer, vol. 45(2), pages 331-342, June.
    3. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    4. Miguel Santolino & Mercedes Ayuso, 2020. "Number and severity of BI victims, assuming dependence between vehicles involved in the crash," IREA Working Papers 202018, University of Barcelona, Research Institute of Applied Economics, revised Dec 2020.
    5. Xiaojun Shao & Xiaoxiang Ma & Feng Chen & Mingtao Song & Xiaodong Pan & Kesi You, 2020. "A Random Parameters Ordered Probit Analysis of Injury Severity in Truck Involved Rear-End Collisions," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    6. Abay, Kibrom A., 2013. "Examining pedestrian-injury severity using alternative disaggregate models," Research in Transportation Economics, Elsevier, vol. 43(1), pages 123-136.
    7. Jie Ma & Xin Ye & Cheng Shi, 2018. "Development of Multivariate Ordered Probit Model to Understand Household Vehicle Ownership Behavior in Xiaoshan District of Hangzhou, China," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    8. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Determining the role of bicycle sharing system infrastructure installation decision on usage: Case study of montreal BIXI system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 685-698.
    9. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Effect of Imitation Phenomenon on Two-Lane Traffic Safety in Fog Weather," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    10. Abay, Kibrom A., 2015. "Investigating the nature and impact of reporting bias in road crash data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 31-45.
    11. Carina Goldbach & Deniz Kayar & Thomas Pitz & Jörn Sickmann, 2022. "Driving, Fast and Slow: An Experimental Investigation of Speed Choice and Information," SAGE Open, , vol. 12(2), pages 21582440221, April.
    12. Rahman, Moshiur & Yasmin, Shamsunnahar & Eluru, Naveen, 2019. "Controlling for endogeneity between bus headway and bus ridership: A case study of the Orlando region," Transport Policy, Elsevier, vol. 81(C), pages 208-219.
    13. Abay, Kibrom A., 2015. "Evaluating simulation-based approaches and multivariate quadrature on sparse grids in estimating multivariate binary probit models," Economics Letters, Elsevier, vol. 126(C), pages 51-56.
    14. Miguel Santolino & Luis Céspedes & Mercedes Ayuso, 2022. "The Impact of Aging Drivers and Vehicles on the Injury Severity of Crash Victims," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    15. Afghari, Amir Pooyan & Faghih Imani, Ahmadreza & Papadimitriou, Eleonora & van Gelder, Pieter & Hezaveh, Amin Mohamadi, 2021. "Disentangling the effects of unobserved factors on seatbelt use choices in multi-occupant vehicles," Journal of choice modelling, Elsevier, vol. 41(C).
    16. Wang, Kailai & Chen, Yu-Jen, 2020. "Joint analysis of the impacts of built environment on bikeshare station capacity and trip attractions," Journal of Transport Geography, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2632-:d:250967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.