IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i5p855-d143175.html
   My bibliography  Save this article

Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta

Author

Listed:
  • Chunsheng Wu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Gaohuan Liu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Chong Huang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Qingsheng Liu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Xudong Guan

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

The Yellow River Delta (YRD), located in Yellow River estuary, is characterized by rich ecological system types, and provides habitats or migration stations for wild birds, all of which makes the delta an ecological barrier or ecotone for inland areas. Nevertheless, the abundant natural resources of YRD have brought huge challenges to the area, and frequent human activities and natural disasters have damaged the ecological systems seriously, and certain ecological functions have been threatened. Therefore, it is necessary to determine the status of the ecological environment based on scientific methods, which can provide scientifically robust data for the managers or stakeholders to adopt timely ecological protection measures. The aim of this study was to obtain the spatial distribution of the ecological vulnerability (EV) in YRD based on 21 indicators selected from underwater status, soil condition, land use, landform, vegetation cover, meteorological conditions, ocean influence, and social economy. In addition, the fuzzy analytic hierarchy process (FAHP) method was used to obtain the weights of the selected indicators, and a fuzzy logic model was constructed to obtain the result. The result showed that the spatial distribution of the EV grades was regular, while the fuzzy membership of EV decreased gradually from the coastline to inland area, especially around the river crossing, where it had the lowest EV. Along the coastline, the dikes had an obviously protective effect for the inner area, while the EV was higher in the area where no dikes were built. This result also showed that the soil condition and groundwater status were highly related to the EV spatially, with the correlation coefficients −0.55 and −0.74 respectively, and human activities had exerted considerable pressure on the ecological environment.

Suggested Citation

  • Chunsheng Wu & Gaohuan Liu & Chong Huang & Qingsheng Liu & Xudong Guan, 2018. "Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta," IJERPH, MDPI, vol. 15(5), pages 1-14, April.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:5:p:855-:d:143175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/5/855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/5/855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Feng & Liu, Xingpeng & Zhang, Jiquan & Wu, Rina & Ma, Qiyun & Chen, Yanan, 2017. "Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China," Ecological Modelling, Elsevier, vol. 349(C), pages 41-50.
    2. Aretano, Roberta & Semeraro, Teodoro & Petrosillo, Irene & De Marco, Antonella & Pasimeni, Maria Rita & Zurlini, Giovanni, 2015. "Mapping ecological vulnerability to fire for effective conservation management of natural protected areas," Ecological Modelling, Elsevier, vol. 295(C), pages 163-175.
    3. Kang Hou & Xuxiang Li & Jing Zhang, 2015. "GIS Analysis of Changes in Ecological Vulnerability Using a SPCA Model in the Loess Plateau of Northern Shaanxi, China," IJERPH, MDPI, vol. 12(4), pages 1-14, April.
    4. Yang, Tao & Liu, Jingling & Chen, Qiuying, 2013. "Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China," Ecological Modelling, Elsevier, vol. 268(C), pages 37-47.
    5. Chatterjee, Kajal & Bandyopadhyay, Abhirup & Ghosh, Amitava & Kar, Samarjit, 2015. "Assessment of environmental factors causing wetland degradation, using Fuzzy Analytic Network Process: A case study on Keoladeo National Park, India," Ecological Modelling, Elsevier, vol. 316(C), pages 1-13.
    6. Kahraman, Cengiz & Ertay, Tijen & Buyukozkan, Gulcin, 2006. "A fuzzy optimization model for QFD planning process using analytic network approach," European Journal of Operational Research, Elsevier, vol. 171(2), pages 390-411, June.
    7. Jan Vermaat & Marieke Eleveld, 2013. "Divergent options to cope with vulnerability in subsiding deltas," Climatic Change, Springer, vol. 117(1), pages 31-39, March.
    8. Li, Lu & Shi, Zhi-Hua & Yin, Wei & Zhu, Dun & Ng, Sai Leung & Cai, Chong-Fa & Lei, A-Lin, 2009. "A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China," Ecological Modelling, Elsevier, vol. 220(23), pages 3439-3447.
    9. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-yuan Wu & Feng-ping Wu & Fang Li & Xia Xu, 2021. "Dynamic Adjustment Model of the Water Rights Trading Price Based on Water Resource Scarcity Value Analysis," IJERPH, MDPI, vol. 18(5), pages 1-22, February.
    2. Chandra Shekhar Dwivedi & Shiva Teja Pampattiwar & Arvind Chandra Pandey & Bikash Ranjan Parida & Debashis Mitra & Navneet Kumar, 2023. "Characterization of the Coastal Vulnerability in Different Geological Settings: A Comparative Study on Kerala and Tamil Nadu Coasts Using FuzzyAHP," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    3. Cheng Zhan & Mingjing Guo & Jinhua Cheng & Hongxia Peng, 2022. "Evaluation of Resources and Environment Carrying Capacity Based on Support Pressure Coupling Mechanism: A Case Study of the Yangtze River Economic Belt," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    4. Raj, Alok & Sharma, Laxmi Kant, 2023. "Spatial E-PSR modelling for ecological sensitivity assessment for arid rangeland resilience and management," Ecological Modelling, Elsevier, vol. 478(C).
    5. Enjun Gong & Fangxin Shi & Zhihui Wang & Qingfeng Hu & Jing Zhang & Hongxin Hai, 2022. "Evaluating Environmental Quality and Its Driving Force in Northeastern China Using the Remote Sensing Ecological Index," Sustainability, MDPI, vol. 14(23), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    2. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    3. Yue Zhang & Yue Chang & Kanhua Yu & Liyuan Zhang & Xuxiang Li, 2021. "Difference Analysis of Ecological Vulnerability and Zoning Changes of National Energy and Chemical Bases Using FAHP Method," IJERPH, MDPI, vol. 18(13), pages 1-14, June.
    4. Harsha Cheemakurthy & Karl Garme, 2022. "Fuzzy AHP-Based Design Performance Index for Evaluation of Ferries," Sustainability, MDPI, vol. 14(6), pages 1-27, March.
    5. Ozalp Vayvay & Yigit Ozcan & Maria Manuela Cruz-Cunha, 2012. "ERP consultant selection problem using AHP, fuzzy AHP and ANP: A case study in Turkey," E3 Journal of Business Management and Economics., E3 Journals, vol. 3(3), pages 106-117.
    6. Hanlong Gu & Chongyang Huan & Fengjiao Yang, 2023. "Spatiotemporal Dynamics of Ecological Vulnerability and Its Influencing Factors in Shenyang City of China: Based on SRP Model," IJERPH, MDPI, vol. 20(2), pages 1-26, January.
    7. Pacheco, Ricardo Rodrigues & Fernandes, Elton & Domingos, Eduardo Marques, 2014. "Airport airside safety index," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 86-92.
    8. Dong Li & Chongyang Huan & Jun Yang & Hanlong Gu, 2022. "Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China," Land, MDPI, vol. 11(7), pages 1-25, July.
    9. Cumhur Güngöroğlu & İrem İsmailoğlu & Bekir Kapukaya & Orkan Özcan & Mustafa Yanalak & Nebiye Musaoğlu, 2024. "Comparison between Post-Fire Analysis and Pre-Fire Risk Assessment According to Various Geospatial Data," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
    10. Nilashi, Mehrbakhsh & Ahmadi, Hossein & Ahani, Ali & Ravangard, Ramin & Ibrahim, Othman bin, 2016. "Determining the importance of Hospital Information System adoption factors using Fuzzy Analytic Network Process (ANP)," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 244-264.
    11. Toni Lupo & Seyyed Ali Delbari, 2018. "A knowledge-based exploratory framework to study quality of Italian mobile telecommunication services," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(1), pages 129-144, May.
    12. Eslam Mohammed Abdelkader & Tarek Zayed & Hassan El Fathali & Ghasan Alfalah & Abobakr Al-Sakkaf & Osama Moselhi, 2023. "An Integrated Multi-Criteria Decision Making Model for the Assessment of Public Private Partnerships in Transportation Projects," Mathematics, MDPI, vol. 11(16), pages 1-41, August.
    13. Jianghong Feng, 2022. "An integrated multi-criteria decision-making method for hazardous waste disposal site selection," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8039-8070, June.
    14. Pasura Aungkulanon & Walailak Atthirawong & Woranat Sangmanee & Pongchanun Luangpaiboon, 2023. "Fuzzy Techniques and Adjusted Mixture Design-Based Scenario Analysis in the CLMV (Cambodia, Lao PDR, Myanmar and Vietnam) Subregion for Multi-Criteria Decision Making in the Apparel Industry," Mathematics, MDPI, vol. 11(23), pages 1-32, November.
    15. Chatterjee, Kajal & Bandyopadhyay, Abhirup & Ghosh, Amitava & Kar, Samarjit, 2015. "Assessment of environmental factors causing wetland degradation, using Fuzzy Analytic Network Process: A case study on Keoladeo National Park, India," Ecological Modelling, Elsevier, vol. 316(C), pages 1-13.
    16. Yang Liu & Xiaoxue Ma & Weiliang Qiao & Huiwen Luo & Peilong He, 2021. "Human Factor Risk Modeling for Shipyard Operation by Mapping Fuzzy Fault Tree into Bayesian Network," IJERPH, MDPI, vol. 19(1), pages 1-31, December.
    17. Chen-Hui Chou & Gin-Shuh Liang & Hung-Chung Chang, 2013. "A fuzzy AHP approach based on the concept of possibility extent," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(1), pages 1-14, January.
    18. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    19. Li, Yan-Lai & Tang, Jia-Fu & Chin, Kwai-Sang & Jiang, Yu-Shi & Han, Yi & Pu, Yun, 2011. "Estimating the final priority ratings of engineering characteristics in mature-period product improvement by MDBA and AHP," International Journal of Production Economics, Elsevier, vol. 131(2), pages 575-586, June.
    20. Guifang Yang & Zhenghong Chen, 2015. "RS-based fuzzy multiattribute assessment of eco-environmental vulnerability in the source area of the Lishui River of northwest Hunan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1145-1161, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:5:p:855-:d:143175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.