IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v2y2011i1p16-20d11241.html
   My bibliography  Save this article

Correlated Individual Differences and Choice Prediction

Author

Listed:
  • Luke Lindsay

    (Department of Economics, University of Zurich, Blümlisalpstrasse 10, 8006 Zurich, Switzerland)

Abstract

This note briefly summarizes the consequences of adding correlated individual differences to the best baseline model in the Games competition, I-SAW. I find evidence that the traits of an individual are correlated, but refining I-SAW to capture these correlations does not significantly improve the model’s accuracy when predicting average behavior.

Suggested Citation

  • Luke Lindsay, 2011. "Correlated Individual Differences and Choice Prediction," Games, MDPI, vol. 2(1), pages 1-5, February.
  • Handle: RePEc:gam:jgames:v:2:y:2011:i:1:p:16-20:d:11241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/2/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/2/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ido Erev & Eyal Ert & Alvin E. Roth, 2010. "Erev, I. et al . A Choice Prediction Competition for Market Entry Games: An Introduction. Games 2010, 1 , 117-136," Games, MDPI, vol. 1(3), pages 1-5, July.
    2. Yechiam, Eldad & Busemeyer, Jerome R., 2008. "Evaluating generalizability and parameter consistency in learning models," Games and Economic Behavior, Elsevier, vol. 63(1), pages 370-394, May.
    3. Ido Erev & Eyal Ert & Alvin E. Roth, 2010. "A Choice Prediction Competition for Market Entry Games: An Introduction," Games, MDPI, vol. 1(2), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lindsay, Luke, 2019. "Adaptive loss aversion and market experience," Journal of Economic Behavior & Organization, Elsevier, vol. 168(C), pages 43-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Chen & Shu-Yu Liu & Chih-Han Chen & Yi-Shan Lee, 2011. "Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games," Games, MDPI, vol. 2(1), pages 1-13, March.
    2. Olli Lappalainen, 2018. "Cooperation and Strategic Complementarity: An Experiment with Two Voluntary Contribution Mechanism Games with Interior Equilibria," Games, MDPI, vol. 9(3), pages 1-24, July.
    3. Andrea Sorensen, 2018. "Creating a Domain of Losses in the Laboratory: Effects of Endowment Size," Games, MDPI, vol. 9(1), pages 1-14, March.
    4. Eyal Ert & Ido Erev & Alvin E. Roth, 2011. "A Choice Prediction Competition for Social Preferences in Simple Extensive Form Games: An Introduction," Games, MDPI, vol. 2(3), pages 1-20, July.
    5. repec:hrv:faseco:32067416 is not listed on IDEAS
    6. Cleotilde Gonzalez & Varun Dutt & Tomás Lejarraga, 2011. "A Loser Can Be a Winner: Comparison of Two Instance-based Learning Models in a Market Entry Competition," Games, MDPI, vol. 2(1), pages 1-27, March.
    7. Chmura, Thorsten & Goerg, Sebastian J. & Selten, Reinhard, 2012. "Learning in experimental 2×2 games," Games and Economic Behavior, Elsevier, vol. 76(1), pages 44-73.
    8. Wang, Yongjie & Yao, Zhouzhou & Wang, Chao & Ren, Jiale & Chen, Qiao, 2020. "The impact of intelligent transportation points system based on Elo rating on emergence of cooperation at Y intersection," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    9. Ion Juvina & Christian Lebiere & Jolie M. Martin & Cleotilde Gonzalez, 2011. "Intergroup Prisoner’s Dilemma with Intragroup Power Dynamics," Games, MDPI, vol. 2(1), pages 1-31, February.
    10. Ofir Yakobi & Doron Cohen & Eitan Naveh & Ido Erev, 2020. "Reliance on small samples and the value of taxing reckless behaviors," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(2), pages 266-281, March.
    11. Ido Erev, 2020. "Money makes the world go round, and basic research can help," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(3), pages 304-310, May.
    12. Lindner, Florian, 2014. "Decision time and steps of reasoning in a competitive market entry game," Economics Letters, Elsevier, vol. 122(1), pages 7-11.
    13. Anufriev, Mikhail & Kopányi, Dávid & Tuinstra, Jan, 2013. "Learning cycles in Bertrand competition with differentiated commodities and competing learning rules," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2562-2581.
    14. Spiliopoulos, Leonidas, 2013. "Beyond fictitious play beliefs: Incorporating pattern recognition and similarity matching," Games and Economic Behavior, Elsevier, vol. 81(C), pages 69-85.
    15. Ori Plonsky & Yefim Roth & Ido Erev, 2021. "Underweighting of rare events in social interactions and its implications to the design of voluntary health applications," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 16(2), pages 267-289, March.
    16. Eric Guerci & Nobuyuki Hanaki & Naoki Watanabe, 2017. "Meaningful learning in weighted voting games: an experiment," Theory and Decision, Springer, vol. 83(1), pages 131-153, June.
    17. Collins, Sean M. & James, Duncan & Servátka, Maroš & Vadovič, Radovan, 2021. "Attainment of equilibrium via Marshallian path adjustment: Queueing and buyer determinism," Games and Economic Behavior, Elsevier, vol. 125(C), pages 94-106.
    18. Larson, Nathan & Elmaghraby, Wedad, 2008. "Procurement auctions with avoidable fixed costs: an experimental approach," MPRA Paper 32163, University Library of Munich, Germany, revised 2011.
    19. Leonidas Spiliopoulos & Andreas Ortmann, 2018. "The BCD of response time analysis in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 21(2), pages 383-433, June.
    20. Silvia Angerer & E. Glenn Dutcher & Daniela Glätzle-Rützler & Philipp Lergetporer & Matthias Sutter, 2021. "The Formation of Risk Preferences Through Small-Scale Events," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2021_16, Max Planck Institute for Research on Collective Goods.
    21. Peysakhovich, Alexander & Naecker, Jeffrey, 2017. "Using methods from machine learning to evaluate behavioral models of choice under risk and ambiguity," Journal of Economic Behavior & Organization, Elsevier, vol. 133(C), pages 373-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:2:y:2011:i:1:p:16-20:d:11241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.