Author
Listed:
- Dimitris Kastoris
(Department of Management Science and Technology, University of Patras, 26504 Patras, Greece
These authors contributed equally to this work.)
- Dimitris Papadopoulos
(Department of Management Science and Technology, University of Patras, 26504 Patras, Greece
These authors contributed equally to this work.)
- Konstantinos Giotopoulos
(Department of Management Science and Technology, University of Patras, 26504 Patras, Greece
These authors contributed equally to this work.)
Abstract
Mathematical modeling plays a crucial role in supporting decision-making across a wide range of scientific disciplines. These models often involve multiple parameters, the estimation of which is critical to assessing their reliability and predictive power. Recent advancements in artificial intelligence have made it possible to efficiently estimate such parameters with high accuracy. In this study, we focus on modeling the dynamics of cryptocurrency market shares by employing a Lotka–Volterra system. We introduce a methodology based on a deep neural network (DNN) to estimate the parameters of the Lotka–Volterra model, which are subsequently used to numerically solve the system using a fourth-order Runge–Kutta method. The proposed approach, when applied to real-world market share data for Bitcoin, Ethereum, and alternative cryptocurrencies, demonstrates excellent alignment with empirical observations. Our method achieves RMSEs of 0.0687 (BTC), 0.0268 (ETH), and 0.0558 (ALTs)—an over 50% reduction in error relative to ARIMA(2,1,2) and over 25% relative to a standard NN–ODE model—thereby underscoring its effectiveness for cryptocurrency-market forecasting. The entire framework, including neural network training and Runge–Kutta integration, was implemented in MATLAB R2024a (version 24.1).
Suggested Citation
Dimitris Kastoris & Dimitris Papadopoulos & Konstantinos Giotopoulos, 2025.
"Neural Network-Informed Lotka–Volterra Dynamics for Cryptocurrency Market Analysis,"
Future Internet, MDPI, vol. 17(8), pages 1-22, July.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:8:p:327-:d:1709235
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:8:p:327-:d:1709235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.