Author
Listed:
- Bosen Li
(State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)
- Rui Li
(State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China)
- Junhao Wang
(State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)
- Aihong Song
(State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)
Abstract
Current tourism route recommendation systems often overemphasize popular destinations, thereby overlooking geographical accessibility between attractions and the experiential coherence of the journey. Leveraging multidimensional attribute perceptions derived from tourist reviews, this study proposes a Spatial–Semantic Integrated Model for Tourist Attraction Representation (SSIM-TAR), which holistically encodes the composite attributes and multifaceted evaluations of attractions. Integrating these multidimensional features with inter-attraction relationships, three relational metrics are defined and fused: spatial proximity, resonance correlation, and thematic-sentiment similarity, forming a Tourist Attraction Multidimensional Association Network (MAN-SRT). This network enables precise characterization of complex inter-attraction dependencies. Building upon MAN-SRT, the Tourism Sentiment Chain (TSC) model is proposed that incorporates geographical accessibility, associative resonance, and thematic-sentiment synergy to optimize the selection and sequential arrangement of attractions in personalized route planning. Results demonstrate that SSIM-TAR effectively captures the integrated attributes and experiential quality of tourist attractions, while MAN-SRT reveals distinct multidimensional association patterns. Compared with popular platforms such as “Qunar” and “Mafengwo”, the TSC approach yields routes with enhanced spatial efficiency and thematic-sentiment coherence. This study advances tourism route modeling by jointly analyzing multidimensional experiential quality through spatial–semantic feature fusion and by achieving an integrated optimization of geographical accessibility and experiential coherence in route design.
Suggested Citation
Bosen Li & Rui Li & Junhao Wang & Aihong Song, 2025.
"Tourism Sentiment Chain Representation Model and Construction from Tourist Reviews,"
Future Internet, MDPI, vol. 17(7), pages 1-30, June.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:7:p:276-:d:1685304
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:7:p:276-:d:1685304. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.