IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i5p198-d1646102.html
   My bibliography  Save this article

Leveraging Retrieval-Augmented Generation for Automated Smart Home Orchestration

Author

Listed:
  • Negin Jahanbakhsh

    (ETSIS de Telecomunicación, Universidad Politécnica de Madrid, Calle Nikola Tesla S/N, 28038 Madrid, Spain)

  • Mario Vega-Barbas

    (ETSIS de Telecomunicación, Universidad Politécnica de Madrid, Calle Nikola Tesla S/N, 28038 Madrid, Spain)

  • Iván Pau

    (ETSIS de Telecomunicación, Universidad Politécnica de Madrid, Calle Nikola Tesla S/N, 28038 Madrid, Spain)

  • Lucas Elvira-Martín

    (ETSIS de Telecomunicación, Universidad Politécnica de Madrid, Calle Nikola Tesla S/N, 28038 Madrid, Spain)

  • Hirad Moosavi

    (ETSIS de Telecomunicación, Universidad Politécnica de Madrid, Calle Nikola Tesla S/N, 28038 Madrid, Spain)

  • Carolina García-Vázquez

    (Facultad de Diseño y Tecnología, University of Design, Innovation and Technology, 28016 Madrid, Spain)

Abstract

The rapid growth of smart home technologies, driven by the expansion of the Internet of Things (IoT), has introduced both opportunities and challenges in automating daily routines and orchestrating device interactions. Traditional rule-based automation systems often fall short in adapting to dynamic conditions, integrating heterogeneous devices, and responding to evolving user needs. To address these limitations, this study introduces a novel smart home orchestration framework that combines generative Artificial Intelligence (AI), Retrieval-Augmented Generation (RAG), and the modular OSGi framework. The proposed system allows users to express requirements in natural language, which are then interpreted and transformed into executable service bundles by large language models (LLMs) enhanced with contextual knowledge retrieved from vector databases. These AI-generated service bundles are dynamically deployed via OSGi, enabling real-time service adaptation without system downtime. Manufacturer-provided device capabilities are seamlessly integrated into the orchestration pipeline, ensuring compatibility and extensibility. The framework was validated through multiple use-case scenarios involving dynamic device discovery, on-demand code generation, and adaptive orchestration based on user preferences. Results highlight the system’s ability to enhance automation efficiency, personalization, and resilience. This work demonstrates the feasibility and advantages of AI-driven orchestration in realising intelligent, flexible, and scalable smart home environments.

Suggested Citation

  • Negin Jahanbakhsh & Mario Vega-Barbas & Iván Pau & Lucas Elvira-Martín & Hirad Moosavi & Carolina García-Vázquez, 2025. "Leveraging Retrieval-Augmented Generation for Automated Smart Home Orchestration," Future Internet, MDPI, vol. 17(5), pages 1-30, April.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:5:p:198-:d:1646102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/5/198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/5/198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    3. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    4. Ting Mei & Hui Liu & Bingrui Tong & Chaozhen Tong & Junjie Zhu & Yuxuan Wang & Mengyao Kou, 2025. "Exploring Knowledge Domain of Intelligent Safety and Security Studies by Bibliometric Analysis," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
    5. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.
    6. Younjoo Cho & Anseop Choi, 2020. "Application of Affordance Factors for User-Centered Smart Homes: A Case Study Approach," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    7. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    9. Birgul Basarir-Ozel & Hande Bahar Turker & Vesile Aslihan Nasir, 2022. "Identifying the Key Drivers and Barriers of Smart Home Adoption: A Thematic Analysis from the Business Perspective," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    10. Lisardo Prieto González & Anna Fensel & Juan Miguel Gómez Berbís & Angela Popa & Antonio de Amescua Seco, 2021. "A Survey on Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(21), pages 1-16, November.
    11. Serap Turkyilmaz & Erkut Altindað, 2022. "Analysis of Smart Home Systems in the Context of the Internet of Things in Terms of Consumer Experience," International Review of Management and Marketing, Econjournals, vol. 12(1), pages 19-31.
    12. Ibrahim Mutambik, 2024. "Culturally Informed Technology: Assessing Its Importance in the Transition to Smart Sustainable Cities," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    13. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    14. Borner, Kathrin & Berends, Hans & Deken, Fleur & Feldberg, Frans, 2023. "Another pathway to complementarity: How users and intermediaries identify and create new combinations in innovation ecosystems," Research Policy, Elsevier, vol. 52(7).
    15. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    16. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    17. Pal, Debajyoti & Zhang, Xiangmin & Siyal, Saeed, 2021. "Prohibitive factors to the acceptance of Internet of Things (IoT) technology in society: A smart-home context using a resistive modelling approach," Technology in Society, Elsevier, vol. 66(C).
    18. Dang, Ngoc Bich & Bertrandias, Laurent, 2023. "Social robots as healing aids: How and why powerlessness influences the intention to adopt social robots," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    19. Jyoti Choudrie & Efpraxia Zamani & Chike Obuekwe, 2022. "Bridging the Digital Divide in Ethnic Minority Older Adults: an Organisational Qualitative Study," Information Systems Frontiers, Springer, vol. 24(4), pages 1355-1375, August.
    20. Omar al-Ani & Sanjoy Das & Hongyu Wu, 2023. "Imitation Learning with Deep Attentive Tabular Neural Networks for Environmental Prediction and Control in Smart Home," Energies, MDPI, vol. 16(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:5:p:198-:d:1646102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.