IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i10p460-d1766657.html
   My bibliography  Save this article

Future Internet Applications in Healthcare: Big Data-Driven Fraud Detection with Machine Learning

Author

Listed:
  • Konstantinos P. Fourkiotis

    (School of Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Athanasios Tsadiras

    (School of Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Hospital fraud detection has often relied on periodic audits that miss evolving, internet-mediated patterns in electronic claims. An artificial intelligence and machine learning pipeline is being developed that is leakage-safe, imbalance aware, and aligned with operational capacity for large healthcare datasets. The preprocessing stack integrates four tables, engineers 13 features, applies imputation, categorical encoding, Power transformation, Boruta selection, and denoising autoencoder representations, with class balancing via SMOTE-ENN evaluated inside cross-validation folds. Eight algorithms are compared under a fraud-oriented composite productivity index that weighs recall, precision, MCC, F1, ROC-AUC, and G-Mean, with per-fold threshold calibration and explicit reporting of Type I and Type II errors. Multilayer perceptron attains the highest composite index, while CatBoost offers the strongest control of false positives with high accuracy. SMOTE-ENN provides limited gains once representations regularize class geometry. The calibrated scores support prepayment triage, postpayment audit, and provider-level profiling, linking alert volume to expected recovery and protecting investigator workload. Situated in the Future Internet context, this work targets internet-mediated claim flows and web-accessible provider registries. Governance procedures for drift monitoring, fairness assessment, and change control complete an internet-ready deployment path. The results indicate that disciplined preprocessing and evaluation, more than classifier choice alone, translate AI improvements into measurable economic value and sustainable fraud prevention in digital health ecosystems.

Suggested Citation

  • Konstantinos P. Fourkiotis & Athanasios Tsadiras, 2025. "Future Internet Applications in Healthcare: Big Data-Driven Fraud Detection with Machine Learning," Future Internet, MDPI, vol. 17(10), pages 1-24, October.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:10:p:460-:d:1766657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/10/460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/10/460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. Jing Li & Kuei-Ying Huang & Jionghua Jin & Jianjun Shi, 2008. "A survey on statistical methods for health care fraud detection," Health Care Management Science, Springer, vol. 11(3), pages 275-287, September.
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. Nicole F. Stowell & Martina Schmidt & Nathan Wadlinger, 2018. "Healthcare fraud under the microscope: improving its prevention," Journal of Financial Crime, Emerald Group Publishing Limited, vol. 25(4), pages 1039-1061, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:plo:pone00:0185380 is not listed on IDEAS
    2. Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
    3. Alexander Kirpich & Elizabeth A Ainsworth & Jessica M Wedow & Jeremy R B Newman & George Michailidis & Lauren M McIntyre, 2018. "Variable selection in omics data: A practical evaluation of small sample sizes," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-19, June.
    4. Sepideh Fahimifar & Khadijeh Mousavi & Fatemeh Mozaffari & Marcel Ausloos, 2023. "Identification of the most important external features of highly cited scholarly papers through 3 (i.e., Ridge, Lasso, and Boruta) feature selection data mining methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3685-3712, August.
    5. Nkiruka C. Atuegwu & Cheryl Oncken & Reinhard C. Laubenbacher & Mario F. Perez & Eric M. Mortensen, 2020. "Factors Associated with E-Cigarette Use in U.S. Young Adult Never Smokers of Conventional Cigarettes: A Machine Learning Approach," IJERPH, MDPI, vol. 17(19), pages 1-16, October.
    6. Wei Fang & Ying Liu & Chun Xu & Xingguang Luo & Kesheng Wang, 2024. "Feature Selection and Machine Learning Approaches in Prediction of Current E-Cigarette Use Among U.S. Adults in 2022," IJERPH, MDPI, vol. 21(11), pages 1-14, November.
    7. Abhijeet R Patil & Sangjin Kim, 2020. "Combination of Ensembles of Regularized Regression Models with Resampling-Based Lasso Feature Selection in High Dimensional Data," Mathematics, MDPI, vol. 8(1), pages 1-23, January.
    8. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    9. Viet Hoang Dinh & Didier Nibbering & Benjamin Wong, 2023. "Random Subspace Local Projections," CAMA Working Papers 2023-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    11. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    12. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    13. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    14. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    15. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    16. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    17. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    18. Álvarez-Liébana, J. & López-Pérez, A. & González-Manteiga, W. & Febrero-Bande, M., 2025. "A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    19. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    20. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    21. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:10:p:460-:d:1766657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.