IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v2y2020i1p1-19d309038.html
   My bibliography  Save this article

Tuning the Bivariate Meta-Gaussian Distribution Conditionally in Quantifying Precipitation Prediction Uncertainty

Author

Listed:
  • Limin Wu

    (National Weather Service, Office of Water Prediction, 1325 East-West Highway, Silver Spring, MD 20910, USA
    Lynker, 202 Church Street, SE/Suite 536, Leesburg, VA 20175, USA)

Abstract

One of the ways to quantify uncertainty of deterministic forecasts is to construct a joint distribution between the forecast variable and the observed variable; then, the uncertainty of the forecast can be represented by the conditional distribution of the observed given the forecast. The joint distribution of two continuous hydrometeorological variables can often be modeled by the bivariate meta-Gaussian distribution (BMGD). The BMGD can be obtained by transforming each of the two variables to a standard normal variable and the dependence between the transformed variables is provided by the Pearson correlation coefficient of these two variables. The BMGD modeling is exact provided that the transformed joint distribution is standard normal. In real-world applications, however, this normality assumption is hardly fulfilled. This is often the case for the modeling problem we consider in this paper: establish the joint distribution of a forecast variable and its corresponding observed variable for precipitation amounts accumulated over a duration of 24 h. In this case, the BMGD can only serve as an approximate model and the dependence parameter can be estimated in a variety of ways. In this paper, the effect of tuning this parameter is studied. Numerical simulations conducted suggest that, while the parameter tuning results in limited improvements in goodness-of-fit (GOF) for the BMGD as a bivariate distribution model, better results may be achieved by tuning the parameter for the one-dimensional conditional distribution of the observed given the forecast greater than a certain large value.

Suggested Citation

  • Limin Wu, 2020. "Tuning the Bivariate Meta-Gaussian Distribution Conditionally in Quantifying Precipitation Prediction Uncertainty," Forecasting, MDPI, vol. 2(1), pages 1-19, January.
  • Handle: RePEc:gam:jforec:v:2:y:2020:i:1:p:1-19:d:309038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/2/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/2/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    2. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    3. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minxue He & Haksu Lee, 2021. "Advances in Hydrological Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    2. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    3. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    4. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    5. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    6. Jorge V. Pérez-Rodríguez, 2020. "Another look at the implied and realised volatility relation: a copula-based approach," Risk Management, Palgrave Macmillan, vol. 22(1), pages 38-64, March.
    7. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    8. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    9. Benlagha, Noureddine, 2020. "Stock market dependence in crisis periods: Evidence from oil price shocks and the Qatar blockade," Research in International Business and Finance, Elsevier, vol. 54(C).
    10. Sun, Xiaolei & Liu, Chang & Wang, Jun & Li, Jianping, 2020. "Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    11. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    12. Janani Sri S. & Parthajit Kayal & G. Balasubramanian, 2022. "Can Equity be Safe-haven for Investment?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(1), pages 32-63, March.
    13. Wang, Mengjiao & Liu, Jianxu & Yang, Bing, 2024. "Does the strength of the US dollar affect the interdependence among currency exchange rates of RCEP and CPTPP countries?," Finance Research Letters, Elsevier, vol. 62(PA).
    14. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    15. Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
    16. David E. Allen & Abhay K. Singh & Robert J. Powell & Michael McAleer & James Taylor & Lyn Thomas, 2013. "Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression," Tinbergen Institute Discussion Papers 13-020/III, Tinbergen Institute.
    17. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    18. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    19. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    20. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:2:y:2020:i:1:p:1-19:d:309038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.