IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i4p237-d66386.html
   My bibliography  Save this article

Cavitation Inception in Crossflow Hydro Turbines

Author

Listed:
  • Ram Chandra Adhikari

    (Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada)

  • Jerson Vaz

    (Faculty of Mechanical Engineering, Federal University of Pará –Av. Augusto Correa, N 1–Belém, PA 66075-900, Brazil
    Current Address: Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada)

  • David Wood

    (Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada)

Abstract

Cavitation is a common flow phenomena in most hydraulic turbines and has the potential to cause vibration, blade surface damage and performance loss. Despite the fact that crossflow turbines have been used in small-scale hydropower systems for a long time, cavitation has not been studied in these turbines. In this paper, we present the findings of a computational study on cavitation inception in crossflow turbines. Cavitation inception was assessed using three-dimensional (3D) Reynolds-Averaged Navier–Stokes (RANS) computations. A homogeneous, free-surface two-phase flow model was used. Pressure distributions on the blades were examined for different flow rates, heads and impeller speeds to assess cavitation inception. The results showed that cavitation occurs in the second stage of the turbine and was observed on the suction side near the inner edge of the blades. For the particular turbine studied, cavitation always occurred at shaft speeds greater than that, giving the maximum efficiency for each combination of flow rate and head. The implication is that the useful operating range of crossflow turbines is up to and including the maximum efficiency point.

Suggested Citation

  • Ram Chandra Adhikari & Jerson Vaz & David Wood, 2016. "Cavitation Inception in Crossflow Hydro Turbines," Energies, MDPI, vol. 9(4), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:4:p:237-:d:66386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/4/237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/4/237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Sammartano & Costanza Aricò & Armando Carravetta & Oreste Fecarotta & Tullio Tucciarelli, 2013. "Banki-Michell Optimal Design by Computational Fluid Dynamics Testing and Hydrodynamic Analysis," Energies, MDPI, vol. 6(5), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    2. Ram Adhikari & David Wood, 2018. "The Design of High Efficiency Crossflow Hydro Turbines: A Review and Extension," Energies, MDPI, vol. 11(2), pages 1-18, January.
    3. Anatoliy M. Pavlenko & Hanna Koshlak, 2021. "Application of Thermal and Cavitation Effects for Heat and Mass Transfer Process Intensification in Multicomponent Liquid Media," Energies, MDPI, vol. 14(23), pages 1-19, November.
    4. Di Zhu & Ruofu Xiao & Ran Tao & Fujun Wang, 2018. "Designing Incidence-Angle-Targeted Anti-Cavitation Foil Profiles Using a Combination Optimization Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    5. Mehr, Goodarz & Durali, Mohammad & Khakrand, Mohammad Hadi & Hoghooghi, Hadi, 2021. "A novel design and performance optimization methodology for hydraulic Cross-Flow turbines using successive numerical simulations," Renewable Energy, Elsevier, vol. 169(C), pages 1402-1421.
    6. Xuanlin Peng & Jianzhong Zhou & Chu Zhang & Ruhai Li & Yanhe Xu & Diyi Chen, 2017. "An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine," Energies, MDPI, vol. 10(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram Adhikari & David Wood, 2018. "The Design of High Efficiency Crossflow Hydro Turbines: A Review and Extension," Energies, MDPI, vol. 11(2), pages 1-18, January.
    2. Martinez, Jayson J. & Deng, Zhiqun Daniel & Mueller, Robert & Titzler, Scott, 2020. "In situ characterization of the biological performance of a Francis turbine retrofitted with a modular guide vane," Applied Energy, Elsevier, vol. 276(C).
    3. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    4. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    5. Mauro Venturini & Stefano Alvisi & Silvio Simani & Lucrezia Manservigi, 2018. "Comparison of Different Approaches to Predict the Performance of Pumps As Turbines (PATs)," Energies, MDPI, vol. 11(4), pages 1-17, April.
    6. Acharya, Nirmal & Kim, Chang-Gu & Thapa, Bhola & Lee, Young-Ho, 2015. "Numerical analysis and performance enhancement of a cross-flow hydro turbine," Renewable Energy, Elsevier, vol. 80(C), pages 819-826.
    7. Leguizamón, Sebastián & Avellan, François, 2020. "Computational parametric analysis of the design of cross-flow turbines under constraints," Renewable Energy, Elsevier, vol. 159(C), pages 300-311.
    8. Oreste Fecarotta & Costanza Aricò & Armando Carravetta & Riccardo Martino & Helena Ramos, 2015. "Hydropower Potential in Water Distribution Networks: Pressure Control by PATs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 699-714, February.
    9. Diamantis Karakatsanis & Nicolaos Theodossiou, 2022. "Smart Hydropower Water Distribution Networks, Use of Artificial Intelligence Methods and Metaheuristic Algorithms to Generate Energy from Existing Water Supply Networks," Energies, MDPI, vol. 15(14), pages 1-21, July.
    10. Hong-Goo Kang & Young-Ho Lee & Chan-Joo Kim & Hyo-Dong Kang, 2022. "Design Optimization of a Cross-Flow Air Turbine for an Oscillating Water Column Wave Energy Converter," Energies, MDPI, vol. 15(7), pages 1-15, March.
    11. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
    12. Jiyun, Du & Hongxing, Yang & Zhicheng, Shen & Xiaodong, Guo, 2018. "Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes," Renewable Energy, Elsevier, vol. 127(C), pages 386-397.
    13. Weerakoon, A.H. Samitha & Kim, Byung-Ha & Cho, Young-Jin & Prasad, Deepak Divashkar & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2021. "Design optimization of a novel vertical augmentation channel housing a cross-flow turbine and performance evaluation as a wave energy converter," Renewable Energy, Elsevier, vol. 180(C), pages 1300-1314.
    14. Endashaw Tesfaye Woldemariam & Hirpa G. Lemu & G. Gary Wang, 2018. "CFD-Driven Valve Shape Optimization for Performance Improvement of a Micro Cross-Flow Turbine," Energies, MDPI, vol. 11(1), pages 1-18, January.
    15. Jiyun, Du & Zhicheng, Shen & Hongxing, Yang, 2018. "Numerical study on the impact of runner inlet arc angle on the performance of inline cross-flow turbine used in urban water mains," Energy, Elsevier, vol. 158(C), pages 228-237.
    16. Mauro Venturini & Stefano Alvisi & Silvio Simani & Lucrezia Manservigi, 2017. "Energy Production by Means of Pumps As Turbines in Water Distribution Networks," Energies, MDPI, vol. 10(10), pages 1-13, October.
    17. Du, Jiyun & Shen, Zhicheng & Yang, Hongxing, 2018. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains," Applied Energy, Elsevier, vol. 228(C), pages 97-107.
    18. Mehr, Goodarz & Durali, Mohammad & Khakrand, Mohammad Hadi & Hoghooghi, Hadi, 2021. "A novel design and performance optimization methodology for hydraulic Cross-Flow turbines using successive numerical simulations," Renewable Energy, Elsevier, vol. 169(C), pages 1402-1421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:4:p:237-:d:66386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.