IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p170-d65220.html
   My bibliography  Save this article

Analysis of a Vertical Flat Heat Pipe Using Potassium Working Fluid and a Wick of Compressed Nickel Foam

Author

Listed:
  • Geir Hansen

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1a, Trondheim 7491, Norway)

  • Erling Næss

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1a, Trondheim 7491, Norway
    These authors contributed equally to this work.)

  • Kolbeinn Kristjansson

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1a, Trondheim 7491, Norway
    These authors contributed equally to this work.)

Abstract

Heat at high temperatures, in this work 400–650 °C, can be recovered by use of cooling panels/heat pipes in the walls of aluminum electrolysis cells. For this application a flat vertical heat pipe for heat transfer from a unilateral heat source was analyzed theoretically and in the laboratory, with special emphasis on the performance of the wick. In this heat pipe a wick of compressed nickel foam covered only the evaporator surface, and potassium was used as the working fluid. The magnitudes of key thermal resistances were estimated analytically and compared. Operating temperatures and wick performance limits obtained experimentally were compared to predictions. Thermal deformation due to unilateral heat flux was analyzed by the use of COMSOL Multiphysics ® . The consequences of hot spots at different locations on the wick were analyzed by use of a numerical 2D model. A vertical rectangular wick was shown to be most vulnerable to hot spots at the upper corners.

Suggested Citation

  • Geir Hansen & Erling Næss & Kolbeinn Kristjansson, 2016. "Analysis of a Vertical Flat Heat Pipe Using Potassium Working Fluid and a Wick of Compressed Nickel Foam," Energies, MDPI, vol. 9(3), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:170-:d:65220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, C.W. & Siqueiros, E. & Ling-Chin, J. & Royapoor, M. & Roskilly, A.P., 2015. "Heat utilisation technologies: A critical review of heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 615-627.
    2. Geir Hansen & Erling Næss & Kolbeinn Kristjansson, 2015. "Sintered Nickel Powder Wicks for Flat Vertical Heat Pipes," Energies, MDPI, vol. 8(4), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Zhirong & Xu, Chao & Ren, Yunxiu & Gao, Feng & Ju, Xing & Du, Xiaoze, 2018. "Thermal analysis of a conceptual loop heat pipe for solar central receivers," Energy, Elsevier, vol. 158(C), pages 709-718.
    2. Metin Celik & Geert Paulussen & Dennis Van Erp & Wiebren De Jong & Bendiks Jan Boersma, 2018. "Transient Modelling of Rotating and Stationary Cylindrical Heat Pipes: An Engineering Model," Energies, MDPI, vol. 11(12), pages 1-15, December.
    3. Xue Chen & Chuang Sun & Xinlin Xia & Rongqiang Liu, 2018. "Numerical Analysis on the Radiation-Convection Coupled Heat Transfer in an Open-Cell Foam Filled Annulus," Energies, MDPI, vol. 11(10), pages 1-20, October.
    4. Hongzhe Zhang & Fang Ye & Hang Guo & Xiaoke Yan, 2022. "Isothermal Performance of Heat Pipes: A Review," Energies, MDPI, vol. 15(6), pages 1-16, March.
    5. Xiang Gou & Yamei Li & Qiyan Zhang & Imran Ali Shah & Dong Zhao & Shian Liu & Yating Wang & Enyu Wang & Jinxiang Wu, 2017. "A Novel Semi-Visualizable Experimental Study of a Plate Gravity Heat Pipe at Unsteady State," Energies, MDPI, vol. 10(12), pages 1-22, December.
    6. Pawel Znaczko & Emilian Szczepanski & Kazimierz Kaminski & Norbert Chamier-Gliszczynski & Jacek Kukulski, 2021. "Experimental Diagnosis of the Heat Pipe Solar Collector Malfunction. A Case Study," Energies, MDPI, vol. 14(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    3. Chih-Yung Tseng & Ho-Meng Wu & Shwin-Chung Wong & Kai-Shing Yang & Chi-Chuan Wang, 2018. "A Novel Thermal Module with 3-D Configuration Pulsating Heat Pipe for High-Flux Applications," Energies, MDPI, vol. 11(12), pages 1-12, December.
    4. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    5. Pei, Wansheng & Zhang, Mingyi & Lai, Yuanming & Yan, Zhongrui & Li, Shuangyang, 2019. "Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions," Energy, Elsevier, vol. 179(C), pages 655-668.
    6. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    7. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2017. "Proposal and assessment of a solar thermoelectric generation system characterized by Fresnel lens, cavity receiver and heat pipe," Energy, Elsevier, vol. 141(C), pages 215-238.
    8. Jouhara, H. & Chauhan, A. & Nannou, T. & Almahmoud, S. & Delpech, B. & Wrobel, L.C., 2017. "Heat pipe based systems - Advances and applications," Energy, Elsevier, vol. 128(C), pages 729-754.
    9. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    11. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    12. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    15. Xiang Gou & Yamei Li & Qiyan Zhang & Imran Ali Shah & Dong Zhao & Shian Liu & Yating Wang & Enyu Wang & Jinxiang Wu, 2017. "A Novel Semi-Visualizable Experimental Study of a Plate Gravity Heat Pipe at Unsteady State," Energies, MDPI, vol. 10(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:170-:d:65220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.