IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i1p49-d62233.html
   My bibliography  Save this article

Power Generation from Concentration Gradient by Reverse Electrodialysis in Dense Silica Membranes for Microfluidic and Nanofluidic Systems

Author

Listed:
  • Sang Woo Lee

    (Department of Mechanical Engineering, Ajou University, Suwon 443-749, Korea)

  • Hyun Jung Kim

    (Department of Mechanical Engineering, Ajou University, Suwon 443-749, Korea)

  • Dong-Kwon Kim

    (Department of Mechanical Engineering, Ajou University, Suwon 443-749, Korea)

Abstract

In this study, we investigate power generation by reverse electrodialysis in a dense silica membrane that is between two NaCl solutions with various combinations of concentrations. Each silica membrane is fabricated by depositing a silica layer on a porous alumina substrate via chemical vapor deposition. The measured potential-current ( V - I ) characteristics of the silica membrane are used to obtain the transference number, diffusion potential, and electrical resistance. We develop empirical correlations for the transference number and the area-specific resistance, and present the results of power generation by reverse electrodialysis using the fabricated silica membranes. The highest measured power density is 0.98 mW/m 2 . In addition, we develop a contour map of the power density as a function of NaCl concentrations on the basis of the empirical correlations. The contour map shows that a power output density of 1.2 mW/m 2 is achievable with the use of silica membranes and is sufficient to drive nanofluidic and microfluidic systems. The dense silica membrane has the potential for use in micro power generators in nanofluidic and microfluidic systems.

Suggested Citation

  • Sang Woo Lee & Hyun Jung Kim & Dong-Kwon Kim, 2016. "Power Generation from Concentration Gradient by Reverse Electrodialysis in Dense Silica Membranes for Microfluidic and Nanofluidic Systems," Energies, MDPI, vol. 9(1), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:1:p:49-:d:62233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/1/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/1/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Juwan & Kim, Sung Jin & Kim, Dong-Kwon, 2013. "Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores," Energy, Elsevier, vol. 51(C), pages 413-421.
    2. Kang, Byeong Dong & Kim, Hyun Jung & Lee, Moon Gu & Kim, Dong-Kwon, 2015. "Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores," Energy, Elsevier, vol. 86(C), pages 525-538.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
    2. Wang, Y. & Wang, H. & Wan, C.Q., 2018. "The effect of colloids on nanofluidic power generation," Energy, Elsevier, vol. 160(C), pages 863-867.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
    2. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization," Energy, Elsevier, vol. 151(C), pages 1-10.
    3. Bevacqua, M. & Tamburini, A. & Papapetrou, M. & Cipollina, A. & Micale, G. & Piacentino, A., 2017. "Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion," Energy, Elsevier, vol. 137(C), pages 1293-1307.
    4. Yunhyun Lee & Hyun Jung Kim & Dong-Kwon Kim, 2020. "Power Generation from Concentration Gradient by Reverse Electrodialysis in Anisotropic Nanoporous Anodic Aluminum Oxide Membranes," Energies, MDPI, vol. 13(4), pages 1-15, February.
    5. Altaee, Ali & Palenzuela, Patricia & Zaragoza, Guillermo & AlAnezi, Adnan Alhathal, 2017. "Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance," Applied Energy, Elsevier, vol. 191(C), pages 328-345.
    6. Kang, Byeong Dong & Kim, Hyun Jung & Lee, Moon Gu & Kim, Dong-Kwon, 2015. "Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores," Energy, Elsevier, vol. 86(C), pages 525-538.
    7. Tan, Guangcai & Xu, Nan & Gao, Dingxue & Zhu, Xiuping, 2022. "Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest," Energy, Elsevier, vol. 258(C).
    8. Chen, Xi & Wang, Lu & Zhou, Ruhong & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "pH-depended behaviors of electrolytes in nanofluidic salinity gradient energy harvesting," Renewable Energy, Elsevier, vol. 211(C), pages 31-41.
    9. Tamburini, A. & Tedesco, M. & Cipollina, A. & Micale, G. & Ciofalo, M. & Papapetrou, M. & Van Baak, W. & Piacentino, A., 2017. "Reverse electrodialysis heat engine for sustainable power production," Applied Energy, Elsevier, vol. 206(C), pages 1334-1353.
    10. Wang, Y. & Wang, H. & Wan, C.Q., 2018. "The effect of colloids on nanofluidic power generation," Energy, Elsevier, vol. 160(C), pages 863-867.
    11. Abbasi-Garravand, Elham & Mulligan, Catherine N. & Laflamme, Claude B. & Clairet, Guillaume, 2016. "Role of two different pretreatment methods in osmotic power (salinity gradient energy) generation," Renewable Energy, Elsevier, vol. 96(PA), pages 98-119.
    12. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
    13. Song, Dongxing & Li, Lu & Huang, Ce & Wang, Ke, 2023. "Synergy between ionic thermoelectric conversion and nanofluidic reverse electrodialysis for high power density generation," Applied Energy, Elsevier, vol. 334(C).
    14. Chen, Xi & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2022. "Impacts of transmembrane pH gradient on nanofluidic salinity gradient energy conversion," Renewable Energy, Elsevier, vol. 187(C), pages 440-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:1:p:49-:d:62233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.