IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p8775-8797d54399.html
   My bibliography  Save this article

Analysis of Unit Process Cost for an Engineering-Scale Pyroprocess Facility Using a Process Costing Method in Korea

Author

Listed:
  • Sungki Kim

    (Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353, Republic of Korea)

  • Wonil Ko

    (Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353, Republic of Korea)

  • Sungsig Bang

    (Department of Business and Technology Management, Korea Advanced Institute of Science and Technology, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea)

Abstract

Pyroprocessing, which is a dry recycling method, converts spent nuclear fuel into U (Uranium)/TRU (TRansUranium) metal ingots in a high-temperature molten salt phase. This paper provides the unit process cost of a pyroprocess facility that can process up to 10 tons of pyroprocessing product per year by utilizing the process costing method. Toward this end, the pyroprocess was classified into four kinds of unit processes: pretreatment, electrochemical reduction, electrorefining and electrowinning. The unit process cost was calculated by classifying the cost consumed at each process into raw material and conversion costs. The unit process costs of the pretreatment, electrochemical reduction, electrorefining and electrowinning were calculated as 195 US$/kgU-TRU, 310 US$/kgU-TRU, 215 US$/kgU-TRU and 231 US$/kgU-TRU, respectively. Finally the total pyroprocess cost was calculated as 951 US$/kgU-TRU. In addition, the cost driver for the raw material cost was identified as the cost for Li 3 PO 4 , needed for the LiCl-KCl purification process, and platinum as an anode electrode in the electrochemical reduction process.

Suggested Citation

  • Sungki Kim & Wonil Ko & Sungsig Bang, 2015. "Analysis of Unit Process Cost for an Engineering-Scale Pyroprocess Facility Using a Process Costing Method in Korea," Energies, MDPI, vol. 8(8), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8775-8797:d:54399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/8775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/8775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nakaten, Natalie & Schlüter, Ralph & Azzam, Rafig & Kempka, Thomas, 2014. "Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process," Energy, Elsevier, vol. 66(C), pages 779-790.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sungki Kim & Jinseop Kim & Dongkeun Cho & Sungsig Bang, 2021. "Quantitative Cost-Benefit Analysis of Direct Disposal and Pyroprocessing in Korea’s Nuclear Fuel Cycle," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    2. Sungki Kim & Jin-Seop Kim & Dong-Keun Cho, 2021. "Comparative Evaluation of Direct Disposal and Pyro-SFR Nuclear Fuel Cycle Alternatives Using Multi Criteria Decision Making in Korea," Energies, MDPI, vol. 14(12), pages 1-20, June.
    3. SungSig Bang & SangYun Park, 2021. "Effect of Depreciation Method for Long-Term Tangible Assets on Sustainable Management: From a Nuclear Power Generation Cost Perspective under the Nuclear Phase-Out Policy," Sustainability, MDPI, vol. 13(9), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    2. Christopher Otto & Thomas Kempka, 2015. "Thermo-Mechanical Simulations of Rock Behavior in Underground Coal Gasification Show Negligible Impact of Temperature-Dependent Parameters on Permeability Changes," Energies, MDPI, vol. 8(6), pages 1-28, June.
    3. Christopher Otto & Thomas Kempka, 2017. "Prediction of Steam Jacket Dynamics and Water Balances in Underground Coal Gasification," Energies, MDPI, vol. 10(6), pages 1-17, May.
    4. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    5. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    6. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    7. Natalie Nakaten & Thomas Kempka, 2019. "Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness," Energies, MDPI, vol. 12(17), pages 1-28, August.
    8. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    9. Fa-qiang Su & Akihiro Hamanaka & Ken-ichi Itakura & Gota Deguchi & Wenyan Zhang & Hua Nan, 2018. "Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam," Energies, MDPI, vol. 11(4), pages 1-11, April.
    10. Ma, Jianli & Li, Qi & Kühn, Michael & Nakaten, Natalie, 2018. "Power-to-gas based subsurface energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 478-496.
    11. Krzysztof Kapusta & Marian Wiatowski & Krzysztof Stańczyk & Renato Zagorščak & Hywel Rhys Thomas, 2020. "Large-scale Experimental Investigations to Evaluate the Feasibility of Producing Methane-Rich Gas (SNG) through Underground Coal Gasification Process. Effect of Coal Rank and Gasification Pressure," Energies, MDPI, vol. 13(6), pages 1-14, March.
    12. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8775-8797:d:54399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.