IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p7945-7967d53488.html
   My bibliography  Save this article

Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid

Author

Listed:
  • Manuela Sechilariu

    (Sorbonne University, Université de Technologie de Compiègne, EA 7284 AVENUES, Centre Pierre Guillaumat CS 60319, Compiègne Cedex 60203, France)

  • Fabrice Locment

    (Sorbonne University, Université de Technologie de Compiègne, EA 7284 AVENUES, Centre Pierre Guillaumat CS 60319, Compiègne Cedex 60203, France)

  • Baochao Wang

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China)

Abstract

In the context of sustainable buildings, this paper investigates power flow management for an isolated DC microgrid and focuses on efficiency and energy cost reduction by optimal scheduling. Aiming at high efficiency, the local produced power has to be used where, when, and how it is generated. Thus, based on photovoltaic sources, storage, and a biofuel generator, the proposed DC microgrid is coupled with the DC distribution network of the building. The DC bus distribution maximizes the efficiency of the overall production-consumption system by avoiding some energy conversion losses and absence of reactive power. The isolated DC microgrid aims to minimize the total energy cost and thus, based on forecasting data, a cost function is formulated. Using a mixed integer linear programming optimization, the optimal power flow scheduling is obtained which leads to an optimization-based strategy for real-time power balancing. Three experimental tests, operated under different meteorological conditions, validate the feasibility of the proposed control and demonstrate the problem formulation of minimizing total energy cost.

Suggested Citation

  • Manuela Sechilariu & Fabrice Locment & Baochao Wang, 2015. "Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid," Energies, MDPI, vol. 8(8), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:7945-7967:d:53488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/7945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/7945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabrice Locment & Manuela Sechilariu, 2015. "Modeling and Simulation of DC Microgrids for Electric Vehicle Charging Stations," Energies, MDPI, vol. 8(5), pages 1-22, May.
    2. Eugenia Giannini & Antonia Moropoulou & Zacharias Maroulis & Glykeria Siouti, 2015. "Penetration of Photovoltaics in Greece," Energies, MDPI, vol. 8(7), pages 1-12, June.
    3. Stephen Whaite & Brandon Grainger & Alexis Kwasinski, 2015. "Power Quality in DC Power Distribution Systems and Microgrids," Energies, MDPI, vol. 8(5), pages 1-22, May.
    4. Gustavo Azevedo Xavier & Delly Oliveira Filho & José Helvecio Martins & Paulo Marcos de Barros Monteiro & Antônia Sônia Alves Cardozo Diniz, 2015. "Simulation of Distributed Generation with Photovoltaic Microgrids—Case Study in Brazil," Energies, MDPI, vol. 8(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agüera-Pérez, Agustín & Palomares-Salas, José Carlos & González de la Rosa, Juan José & Florencias-Oliveros, Olivia, 2018. "Weather forecasts for microgrid energy management: Review, discussion and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 265-278.
    2. Alla Ndiaye & Fabrice Locment & Alexandre De Bernardinis & Manuela Sechilariu & Eduardo Redondo-Iglesias, 2022. "A Techno-Economic Analysis of Energy Storage Components of Microgrids for Improving Energy Management Strategies," Energies, MDPI, vol. 15(4), pages 1-15, February.
    3. Tri Ardriani & Pekik Argo Dahono & Arwindra Rizqiawan & Erna Garnia & Pungky Dwi Sastya & Ahmad Husnan Arofat & Muhammad Ridwan, 2021. "A DC Microgrid System for Powering Remote Areas," Energies, MDPI, vol. 14(2), pages 1-15, January.
    4. Hongwei Wu & Fabrice Locment & Manuela Sechilariu, 2019. "Experimental Implementation of a Flexible PV Power Control Mechanism in a DC Microgrid," Energies, MDPI, vol. 12(7), pages 1-12, March.
    5. Mingxuan Chen & Suliang Ma & Haiyong Wan & Jianwen Wu & Yuan Jiang, 2018. "Distributed Control Strategy for DC Microgrids of Photovoltaic Energy Storage Systems in Off-Grid Operation," Energies, MDPI, vol. 11(10), pages 1-19, October.
    6. Boyu Qin & Haixiang Gao & Jin Ma & Wei Li & Albert Y. Zomaya, 2018. "An Input-to-State Stability-Based Load Restoration Approach for Isolated Power Systems," Energies, MDPI, vol. 11(3), pages 1-17, March.
    7. Cristina Rottondi & Markus Duchon & Dagmar Koss & Andrei Palamarciuc & Alessandro Pití & Giacomo Verticale & Bernhard Schätz, 2015. "An Energy Management Service for the Smart Office," Energies, MDPI, vol. 8(10), pages 1-18, October.
    8. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    9. Yuri Bulatov & Andrey Kryukov & Konstantin Suslov, 2022. "Simulation of Power Router-Based DC Distribution Systems with Distributed Generation and Energy Storage Units," Energies, MDPI, vol. 16(1), pages 1-16, December.
    10. Yongchun Yang & Xiaodan Wang & Jingjing Luo & Jie Duan & Yajing Gao & Hong Li & Xiangning Xiao, 2017. "Multi-Objective Coordinated Planning of Distributed Generation and AC/DC Hybrid Distribution Networks Based on a Multi-Scenario Technique Considering Timing Characteristics," Energies, MDPI, vol. 10(12), pages 1-29, December.
    11. Seung-Woon Lee & Bo-Hyung Cho, 2016. "Master–Slave Based Hierarchical Control for a Small Power DC-Distributed Microgrid System with a Storage Device," Energies, MDPI, vol. 9(11), pages 1-14, October.
    12. Xiaodong Lu & Jiangwen Wan, 2016. "Modeling and Control of the Distributed Power Converters in a Standalone DC Microgrid," Energies, MDPI, vol. 9(3), pages 1-19, March.
    13. Abualkasim Bakeer & Andrii Chub & Dmitri Vinnikov & Argo Rosin, 2020. "Wide Input Voltage Range Operation of the Series Resonant DC-DC Converter with Bridgeless Boost Rectifier," Energies, MDPI, vol. 13(16), pages 1-18, August.
    14. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    15. Feras Alasali & Stephen Haben & Victor Becerra & William Holderbaum, 2017. "Optimal Energy Management and MPC Strategies for Electrified RTG Cranes with Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-18, October.
    16. Upasana Lakhina & Irraivan Elamvazuthi & Nasreen Badruddin & Ajay Jangra & Bao-Huy Truong & Joseph M. Guerrero, 2023. "A Cost-Effective Multi-Verse Optimization Algorithm for Efficient Power Generation in a Microgrid," Sustainability, MDPI, vol. 15(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Fernando Grisales-Noreña & Carlos Andrés Ramos-Paja & Daniel Gonzalez-Montoya & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2020. "Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    2. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    3. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    4. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    5. Ahmad Alzahrani & Pourya Shamsi & Mehdi Ferdowsi, 2020. "Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells," Energies, MDPI, vol. 13(22), pages 1-18, November.
    6. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    7. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    8. García-Triviño, Pablo & Torreglosa, Juan P. & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2016. "Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system," Energy, Elsevier, vol. 115(P1), pages 38-48.
    9. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    10. Derong Luo & Ting Wu & Ming Li & Benshun Yi & Haibo Zuo, 2020. "Application of VMD and Hilbert Transform Algorithms on Detection of the Ripple Components of the DC Signal," Energies, MDPI, vol. 13(4), pages 1-20, February.
    11. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    12. Aiswariya Sekar & Dhanasekaran Raghavan, 2015. "Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles," Energies, MDPI, vol. 8(11), pages 1-16, November.
    13. Seok-Jin Hong & Seung-Wook Hyun & Kyung-Min Kang & Jung-Hyo Lee & Chung-Yuen Won, 2018. "Improvement of Transient State Response through Feedforward Compensation Method of AC/DC Power Conversion System (PCS) Based on Space Vector Pulse Width Modulation (SVPWM)," Energies, MDPI, vol. 11(6), pages 1-16, June.
    14. Feng Wang & Lizheng Sun & Zhang Wen & Fang Zhuo, 2022. "Overview of Inertia Enhancement Methods in DC System," Energies, MDPI, vol. 15(18), pages 1-25, September.
    15. Ioannis E. Kosmadakis & Costas Elmasides & Dimitrios Eleftheriou & Konstantinos P. Tsagarakis, 2019. "A Techno-Economic Analysis of a PV-Battery System in Greece," Energies, MDPI, vol. 12(7), pages 1-14, April.
    16. Alena Otcenasova & Roman Bodnar & Michal Regula & Marek Hoger & Michal Repak, 2017. "Methodology for Determination of the Number of Equipment Malfunctions Due to Voltage Sags," Energies, MDPI, vol. 10(3), pages 1-26, March.
    17. Chul-Sang Hwang & Eung-Sang Kim & Yun-Su Kim, 2016. "A Decentralized Control Method for Distributed Generations in an Islanded DC Microgrid Considering Voltage Drop Compensation and Durable State of Charge," Energies, MDPI, vol. 9(12), pages 1-13, December.
    18. Dominic Savio Abraham & Balaji Chandrasekar & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Venkatesan Ramakrishnan & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Fuzzy-Based Efficient Control of DC Microgrid Configuration for PV-Energized EV Charging Station," Energies, MDPI, vol. 16(6), pages 1-17, March.
    19. Stelios Loumakis & Evgenia Giannini & Zacharias Maroulis, 2019. "Renewable Energy Sources Penetration in Greece: Characteristics and Seasonal Variation of the Electricity Demand Share Covering," Energies, MDPI, vol. 12(12), pages 1-20, June.
    20. Ashraf Ramadan & Mohamed Ebeed & Salah Kamel & Almoataz Y. Abdelaziz & Hassan Haes Alhelou, 2021. "Scenario-Based Stochastic Framework for Optimal Planning of Distribution Systems Including Renewable-Based DG Units," Sustainability, MDPI, vol. 13(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:7945-7967:d:53488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.