IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p2803-2827d48175.html
   My bibliography  Save this article

A Combined Optical, Thermal and Electrical Performance Study of a V-Trough PV System—Experimental and Analytical Investigations

Author

Listed:
  • Haitham M. Bahaidarah

    (Center of Research Excellence in Renewable Energy, RI, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia)

  • Bilal Tanweer

    (Mechanical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia)

  • Palanichamy Gandhidasan

    (Mechanical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia)

  • Shafiqur Rehman

    (Center for Engineering Research, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia)

Abstract

The objective of this study was to achieve higher efficiency of a PV system while reducing of the cost of energy generation. Concentration photovoltaics was employed in the present case as it uses low cost reflectors to enhance the efficiency of the PV system and simultaneously reduces the cost of electricity generation. For this purpose a V-trough integrated with the PV system was employed for low concentration photovoltaic (LCPV). Since the electrical output of the concentrating PV system is significantly affected by the temperature of the PV cells, the motivation of the research also included studying the ability to actively cool PV cells to achieve the maximum benefit. The optical, thermal and electrical performance of the V-trough PV system was theoretically modeled and validated with experimental results. Optical modeling of V-trough was carried out to estimate the amount of enhanced absorbed radiation. Due to increase in the absorbed radiation the module temperature was also increased which was predicted by thermal model. Active cooling techniques were studied and the effect of cooling was analyzed on the performance of V-trough PV system. With absorbed radiation and module temperature as input parameters, electrical modeling was carried out and the maximum power was estimated. For the V-trough PV system, experiments were performed for validating the numerical models and very good agreement was found between the two.

Suggested Citation

  • Haitham M. Bahaidarah & Bilal Tanweer & Palanichamy Gandhidasan & Shafiqur Rehman, 2015. "A Combined Optical, Thermal and Electrical Performance Study of a V-Trough PV System—Experimental and Analytical Investigations," Energies, MDPI, vol. 8(4), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2803-2827:d:48175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/2803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/2803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stutenbaeumer, Ulrich & Mesfin, Belayneh, 1999. "Equivalent model of monocrystalline, polycrystalline and amorphous silicon solar cells," Renewable Energy, Elsevier, vol. 18(4), pages 501-512.
    2. Shaltout, M.A.Mosalam & Ghettas, A. & Sabry, M., 1995. "V-trough concentrator on a photovoltaic full tracking system in a hot desert climate," Renewable Energy, Elsevier, vol. 6(5), pages 527-532.
    3. Kostic, Ljiljana T. & Pavlovic, Tomislav M. & Pavlovic, Zoran T., 2010. "Influence of reflectance from flat aluminum concentrators on energy efficiency of PV/Thermal collector," Applied Energy, Elsevier, vol. 87(2), pages 410-416, February.
    4. Vilela, O.C. & Bione, J. & Fraidenraich, N., 2004. "Simulation of grape culture irrigation with photovoltaic V-trough pumping systems," Renewable Energy, Elsevier, vol. 29(10), pages 1697-1705.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    2. Arias-Rosales, Andrés & Mejía-Gutiérrez, Ricardo, 2018. "Optimization of V-Trough photovoltaic concentrators through genetic algorithms with heuristics based on Weibull distributions," Applied Energy, Elsevier, vol. 212(C), pages 122-140.
    3. Muhammad Adil Khan & Byeonghun Ko & Esebi Alois Nyari & S. Eugene Park & Hee-Je Kim, 2017. "Performance Evaluation of Photovoltaic Solar System with Different Cooling Methods and a Bi-Reflector PV System (BRPVS): An Experimental Study and Comparative Analysis," Energies, MDPI, vol. 10(6), pages 1-23, June.
    4. Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Ali Alahmer & Hegazy Rezk, 2020. "Design, Modeling, and Experimental Investigation of Active Water Cooling Concentrating Photovoltaic System," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    5. Kasaeian, Alibakhsh & Tabasi, Sanaz & Ghaderian, Javad & Yousefi, Hossein, 2018. "A review on parabolic trough/Fresnel based photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 193-204.
    6. Thanh Tuan Pham & Ngoc Hai Vu & Seoyong Shin, 2019. "Novel Design of Primary Optical Elements Based on a Linear Fresnel Lens for Concentrator Photovoltaic Technology," Energies, MDPI, vol. 12(7), pages 1-20, March.
    7. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    8. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    9. Filip Žemla & Ján Cigánek & Danica Rosinová & Erik Kučera & Oto Haffner, 2023. "Complex Positioning System for the Control and Visualization of Photovoltaic Systems," Energies, MDPI, vol. 16(10), pages 1-31, May.
    10. Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Baig, H. & Fernandez, E.F. & Mallick, T.K. & Montecucco, A. & Siviter, J. & Knox, A.R. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems," Renewable Energy, Elsevier, vol. 112(C), pages 166-186.
    11. Jakhar, Sanjeev & Soni, M.S. & Gakkhar, Nikhil, 2016. "Historical and recent development of concentrating photovoltaic cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 41-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & Iqbal, S. Mohamed & Iniyan, S. & Goic, Ranko, 2018. "Enhanced electrical performance in a solar photovoltaic module using V-trough concentrators," Energy, Elsevier, vol. 148(C), pages 605-613.
    2. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    3. Mosalam Shaltout, M.A. & El-Nicklawy, M.M. & Hassan, A.F. & Rahoma, U.A. & Sabry, M., 2000. "The temperature dependence of the spectral and efficiency behavior of Si solar cell under low concentrated solar radiation," Renewable Energy, Elsevier, vol. 21(3), pages 445-458.
    4. Muhammad Adil Khan & Byeonghun Ko & Esebi Alois Nyari & S. Eugene Park & Hee-Je Kim, 2017. "Performance Evaluation of Photovoltaic Solar System with Different Cooling Methods and a Bi-Reflector PV System (BRPVS): An Experimental Study and Comparative Analysis," Energies, MDPI, vol. 10(6), pages 1-23, June.
    5. Habib Kraiem & Ezzeddine Touti & Abdulaziz Alanazi & Ahmed M. Agwa & Tarek I. Alanazi & Mohamed Jamli & Lassaad Sbita, 2023. "Parameters Identification of Photovoltaic Cell and Module Models Using Modified Social Group Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    6. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    7. Alberto Pardellas & Pedro Fortuny Ayuso & Luis Bayón & Arsenio Barbón, 2023. "A New Two-Foci V-Trough Concentrator for Small-Scale Linear Fresnel Reflectors," Energies, MDPI, vol. 16(4), pages 1-18, February.
    8. Guihua Li & Jingjing Tang & Runsheng Tang, 2019. "Performance and Design Optimization of a One-Axis Multiple Positions Sun-Tracked V-trough for Photovoltaic Applications," Energies, MDPI, vol. 12(6), pages 1-23, March.
    9. Looser, R. & Vivar, M. & Everett, V., 2014. "Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications," Applied Energy, Elsevier, vol. 113(C), pages 1496-1511.
    10. Rehman, Naveed ur & Uzair, Muhammad, 2022. "Concentrator shape optimization using particle swarm optimization for solar concentrating photovoltaic applications," Renewable Energy, Elsevier, vol. 184(C), pages 1043-1054.
    11. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    12. Dizqah, Arash M. & Maheri, Alireza & Busawon, Krishna, 2014. "An accurate method for the PV model identification based on a genetic algorithm and the interior-point method," Renewable Energy, Elsevier, vol. 72(C), pages 212-222.
    13. Reca, J. & Torrente, C. & López-Luque, R. & Martínez, J., 2016. "Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 85(C), pages 1143-1154.
    14. Guihua Li & Yamei Yu & Runsheng Tang, 2020. "Performance and Design Optimization of Two-Mirror Composite Concentrating PV Systems," Energies, MDPI, vol. 13(11), pages 1-23, June.
    15. Carrero, C. & Amador, J. & Arnaltes, S., 2007. "A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, Elsevier, vol. 32(15), pages 2579-2589.
    16. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    17. Elharoun, O. & Tawfik, M. & El-Sharkawy, Ibrahim I. & Zeidan, E., 2023. "Experimental investigation of photovoltaic performance with compound parabolic solar concentrator and fluid spectral filter," Energy, Elsevier, vol. 278(PA).
    18. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Christo, Farid C., 2012. "Numerical modelling of wind and dust patterns around a full-scale paraboloidal solar dish," Renewable Energy, Elsevier, vol. 39(1), pages 356-366.
    20. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2803-2827:d:48175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.