IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2350-d1649116.html
   My bibliography  Save this article

Heat Transfer by Transmission in a Zone with a Thermally Activated Building System: An Extension of the ISO 11855 Hourly Calculation Method. Measurement and Simulation

Author

Listed:
  • Piotr Michalak

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Water systems with pipes embedded in the horizontal concrete core slabs can be used for efficient space heating and cooling of passive and low-energy buildings. ISO 11855-4 describes the hourly simulation method of such systems while recommending to use other simulation tools to assess heat flow by transmission to the ambient environment. As it plays an important role in the thermal balance of a conditioned zone, this paper presents two calculation methods to obtain heat flow through the envelope. They were integrated with a general algorithm given in ISO 11855-4 and the simulation tool was developed. To validate the presented solution measurements were performed in a passive office building during the heating (November) and cooling (July) periods. The total heat transfer coefficient by transmission was measured and compared with the theoretical design value. Both proposed simulation algorithms provided results with very good accuracy. In the first period, the mean absolute of percentage error (MAPE) of the indoor air and floor temperatures amounted to 0.65% and 0.75%, respectively. Simulations showed that heating demand was covered mainly by the floor (28.7%), internal gains (21.7%), and ceiling (18.7%), while heat loss to the environment was mainly due to external partitions (94.0%). In the second period MAE and MAPE did not exceed 0.19 °C and 0.90%, respectively. Floor and ceiling were mainly responsible for heat gains removal (61%). Solar radiation was the main source (91%) of internal gains. The results obtained confirmed the assumptions taken. The simulation programme developed does not require the use of additional tools.

Suggested Citation

  • Piotr Michalak, 2025. "Heat Transfer by Transmission in a Zone with a Thermally Activated Building System: An Extension of the ISO 11855 Hourly Calculation Method. Measurement and Simulation," Energies, MDPI, vol. 18(9), pages 1-27, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2350-:d:1649116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoang Pham, 2019. "A New Criterion for Model Selection," Mathematics, MDPI, vol. 7(12), pages 1-12, December.
    2. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Piotr Michalak, 2021. "Selected Aspects of Indoor Climate in a Passive Office Building with a Thermally Activated Building System: A Case Study from Poland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Marek Borowski & Klaudia Zwolińska & Marcin Czerwiński, 2022. "An Experimental Study of Thermal Comfort and Indoor Air Quality—A Case Study of a Hotel Building," Energies, MDPI, vol. 15(6), pages 1-18, March.
    3. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    4. Sung-Jin Kwon & Jae-Hun Jo & Dong-Seok Lee, 2024. "Proposal of Three Methods for Deriving Representative Mean Radiant Temperatures Considering Zone Spatial Distributions," Energies, MDPI, vol. 17(20), pages 1-19, October.
    5. Kanthilanka, H. & Ramilan, T. & Farquharson, R.J. & Weerahewa, J., 2023. "Optimal nitrogen fertilizer decisions for rice farming in a cascaded tank system in Sri Lanka: An analysis using an integrated crop, hydro-nutrient and economic model," Agricultural Systems, Elsevier, vol. 207(C).
    6. Piotr Michalak, 2021. "Annual Energy Performance of an Air Handling Unit with a Cross-Flow Heat Exchanger," Energies, MDPI, vol. 14(6), pages 1-16, March.
    7. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2022. "Thermal Comfort—Case Study in a Lightweight Passive House," Energies, MDPI, vol. 15(13), pages 1-21, June.
    8. Rima Aridi & Jalal Faraj & Samer Ali & Mostafa Gad El-Rab & Thierry Lemenand & Mahmoud Khaled, 2021. "Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations," Energies, MDPI, vol. 14(18), pages 1-31, September.
    9. Seif Khiati & Rafik Belarbi & Ammar Yahia, 2023. "Sustainable Buildings: A Choice, or a Must for Our Future?," Energies, MDPI, vol. 16(6), pages 1-5, March.
    10. Ahmad Al Humssi & Maria Petrovskaya & Milana Abueva, 2022. "Modelling the Impact of World Oil Prices and the Mining and Quarrying Sector on the United Arab Emirates’ GDP," Mathematics, MDPI, vol. 11(1), pages 1-22, December.
    11. Mohammad Rasoul Nazari Sendi & Iraj Hassanzad Navroodi & Aman Mohammad Kalteh, . "Estimation of Fagus orientalis Lipsky height using nonlinear models in Hyrcanian forests, Iran," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 0.
    12. Piotr Michalak, 2025. "Experimental Study on Heat Transfer Coefficients in an Office Room with a Radiant Ceiling During Low Heating Loads," Energies, MDPI, vol. 18(7), pages 1-19, March.
    13. Chun-Chieh Tseng & Kuo-Ching Chiou & Kuen-Suan Chen, 2022. "Estimation of the Six Sigma Quality Index," Mathematics, MDPI, vol. 10(19), pages 1-13, September.
    14. María M. Villar-Ramos & Iván Hernández-Pérez & Karla M. Aguilar-Castro & Ivett Zavala-Guillén & Edgar V. Macias-Melo & Irving Hernández-López & Juan Serrano-Arellano, 2022. "A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings," Energies, MDPI, vol. 15(17), pages 1-31, August.
    15. S. J. Anchima & A. Gokul & Chandini P. C. Senan & Jean Homian Danumah & Sunil Saha & K. S. Sajinkumar & A. Rajaneesh & Alfred Johny & Pratheesh C. Mammen & R. S. Ajin, 2025. "Vulnerability evaluation utilizing AHP and an ensemble model in a few landslide-prone areas of the Western Ghats, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 6423-6466, March.
    16. Monika Trojanová & Alexander Hošovský & Tomáš Čakurda, 2022. "Evaluation of Machine Learning-Based Parsimonious Models for Static Modeling of Fluidic Muscles in Compliant Mechanisms," Mathematics, MDPI, vol. 11(1), pages 1-33, December.
    17. Nurlan Zhangabay & Arukhan Oner & Murat Rakhimov & Timur Tursunkululy & Uliya Abdikerova, 2025. "Thermal Performance Evaluation of a Retrofitted Building with Adaptive Composite Energy-Saving Facade Systems," Energies, MDPI, vol. 18(6), pages 1-25, March.
    18. Lee, Dong-Seok & Jo, Jae-Hun, 2025. "Measuring and implementing mean radiant temperature in buildings: Technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    19. Joanna Sinacka & Edward Szczechowiak, 2021. "An Experimental Study of a Thermally Activated Ceiling Containing Phase Change Material for Different Cooling Load Profiles," Energies, MDPI, vol. 14(21), pages 1-16, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2350-:d:1649116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.