IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2297-d1646600.html
   My bibliography  Save this article

Toward a Sustainable Indoor Environment: Coupling Geothermal Cooling with Water Recovery Through EAHX Systems

Author

Listed:
  • Cristina Baglivo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Alessandro Buscemi

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Michele Spagnolo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Marina Bonomolo

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Valerio Lo Brano

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Paolo Maria Congedo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

Abstract

This study presents a preliminary analysis of an innovative system that combines indoor air conditioning with water recovery and storage. The device integrates Peltier cells with a horizontal Earth-to-Air Heat Exchanger (EAHX), exploiting the ground stable temperature to enhance cooling and promote condensation. Warm, humid air is pre-cooled via the geothermal pipe, then split by a fan into two streams: one passes over the cold side of the Peltier cells for cooling and dehumidification, while the other flows over the hot side and heats up. The two airstreams are then mixed in a water storage tank, which also serves as a thermal mixing chamber to regulate the final air temperature. The analysis investigates the influence of soil thermal conditions on condensation within the horizontal pipe and the resulting cooling effect in indoor spaces. A hybrid simulation approach was adopted, coupling a 3D model implemented in COMSOL Multiphysics ® with a 1D analytical model. Boundary conditions and meteorological data were based on the Typical Meteorological Year (TMY) for Palermo. Two scenarios were considered. In Case A, during the hours when air conditioning is not operating (between 11 p.m. and 9 a.m.), air is circulated in the exchanger to pre-cool the ground and the air leaving the exchanger is rejected into the environment. In Case B, the no air is not circulated in the heat exchanger during non-conditioning periods. Results from the June–August period show that the EAHXs reduced the average outdoor air temperature from 27.81 °C to 25.45 °C, with relative humidity rising from 58.2% to 66.66%, while maintaining nearly constant specific humidity. The system exchanged average powers of 102 W (Case A) and 96 W (Case B), corresponding to energy removals of 225 kWh and 212 kWh, respectively. Case A, which included nighttime soil pre-cooling, showed a 6% increase in efficiency. Condensation water production values range from around 0.005 g/s with one Peltier cell to almost 0.5 g/s with seven Peltier cells. As the number of Peltier cells increases, the cooling effect becomes more pronounced, reducing the output temperature considerably. This solution is scalable and well-suited for implementation in developing countries, where it can be efficiently powered by stand-alone photovoltaic systems.

Suggested Citation

  • Cristina Baglivo & Alessandro Buscemi & Michele Spagnolo & Marina Bonomolo & Valerio Lo Brano & Paolo Maria Congedo, 2025. "Toward a Sustainable Indoor Environment: Coupling Geothermal Cooling with Water Recovery Through EAHX Systems," Energies, MDPI, vol. 18(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2297-:d:1646600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristina Baglivo & Sara Bonuso & Paolo Maria Congedo, 2018. "Performance Analysis of Air Cooled Heat Pump Coupled with Horizontal Air Ground Heat Exchanger in the Mediterranean Climate," Energies, MDPI, vol. 11(10), pages 1-21, October.
    2. Niu, Fuxin & Yu, Yuebin & Yu, Daihong & Li, Haorong, 2015. "Heat and mass transfer performance analysis and cooling capacity prediction of earth to air heat exchanger," Applied Energy, Elsevier, vol. 137(C), pages 211-221.
    3. Sara Bonuso & Simone Panico & Cristina Baglivo & Domenico Mazzeo & Nicoletta Matera & Paolo Maria Congedo & Giuseppe Oliveti, 2020. "Dynamic Analysis of the Natural and Mechanical Ventilation of a Solar Greenhouse by Coupling Controlled Mechanical Ventilation (CMV) with an Earth-to-Air Heat Exchanger (EAHX)," Energies, MDPI, vol. 13(14), pages 1-22, July.
    4. Yu Zhou & Asal Bidarmaghz & Nikolas Makasis & Guillermo Narsilio, 2021. "Ground-Source Heat Pump Systems: The Effects of Variable Trench Separations and Pipe Configurations in Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 14(13), pages 1-15, June.
    5. Khaled Salhein & C. J. Kobus & Mohamed Zohdy & Ahmed M. Annekaa & Edrees Yahya Alhawsawi & Sabriya Alghennai Salheen, 2024. "Heat Transfer Performance Factors in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System," Energies, MDPI, vol. 17(19), pages 1-28, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    2. Hanna Koshlak, 2025. "A Review of Earth-Air Heat Exchangers: From Fundamental Principles to Hybrid Systems with Renewable Energy Integration," Energies, MDPI, vol. 18(5), pages 1-35, February.
    3. Nadjat Kouki & Diana D’Agostino & Andrea Vityi, 2025. "Properties of Earth-to-Air Heat Exchangers (EAHE): Insights and Perspectives Based on System Performance," Energies, MDPI, vol. 18(7), pages 1-16, April.
    4. Di Qi & Chuangyao Zhao & Shixiong Li & Ran Chen & Angui Li, 2021. "Numerical Assessment of Earth to Air Heat Exchanger with Variable Humidity Conditions in Greenhouses," Energies, MDPI, vol. 14(5), pages 1-18, March.
    5. Mushk Bughio & Swati Bahale & Waqas Ahmed Mahar & Thorsten Schuetze, 2022. "Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates," Energies, MDPI, vol. 15(19), pages 1-21, September.
    6. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    7. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    8. Wei, Haibin & Yang, Dong & Guo, Yuanhao & Chen, Mengqian, 2018. "Coupling of earth-to-air heat exchangers and buoyancy for energy-efficient ventilation of buildings considering dynamic thermal behavior and cooling/heating capacity," Energy, Elsevier, vol. 147(C), pages 587-602.
    9. Ming Tao & Yanzhe Yu & Huan Zhang & Tianzhen Ye & Shijun You & Mengting Zhang, 2021. "Research on the Optimization Design of Solar Energy-Gas-Fired Boiler Systems for Decentralized Heating," Energies, MDPI, vol. 14(11), pages 1-27, May.
    10. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    11. Atwany, Hanin & Hamdan, Mohammad O. & Abu-Nabah, Bassam A. & Alami, Abdul Hai & Attom, Mousa, 2020. "Experimental evaluation of ground heat exchanger in UAE," Renewable Energy, Elsevier, vol. 159(C), pages 538-546.
    12. Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
    13. Cristina Baglivo & Paolo Maria Congedo & Pasquale Antonio Donno, 2021. "Analysis of Thermodynamic Cycles of Heat Pumps and Magnetic Refrigerators Using Mathematical Models," Energies, MDPI, vol. 14(4), pages 1-26, February.
    14. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    15. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).
    16. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    17. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Jose María Fernandez-Rodriguez & Angélica Lozano-Lunar & Antonio Rodero, 2022. "The Study of Soil Temperature Distribution for Very Low-Temperature Geothermal Energy Applications in Selected Locations of Temperate and Subtropical Climate," Energies, MDPI, vol. 15(9), pages 1-19, May.
    18. Fan, Zilong & Liu, Zhiwei & Li, Youyu & Zhang, Jingfu & Tu, Gao & Ding, Tao, 2024. "New insights to boost the application potential of Chinese solar greenhouses in cold desert regions: System design and implementation," Energy, Elsevier, vol. 313(C).
    19. Gan, Guohui, 2017. "Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings," Renewable Energy, Elsevier, vol. 103(C), pages 361-371.
    20. Yu, Yuebin & Niu, Fuxin & Guo, Heinz-Axel & Woradechjumroen, Denchai, 2016. "A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water," Energy, Elsevier, vol. 99(C), pages 250-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2297-:d:1646600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.