IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2263-d1645435.html
   My bibliography  Save this article

Research on the Modelling and Analysis of the Penetration of Renewable Sources and Storage into Electrical Networks

Author

Listed:
  • Eva Simonič

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, 8270 Krško, Slovenia)

  • Sebastijan Seme

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, 8270 Krško, Slovenia
    Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia)

  • Klemen Sredenšek

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, 8270 Krško, Slovenia
    Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia)

Abstract

To address the growing integration of renewable energy sources and storage systems into distribution networks, there is a need for effective tools that can assess the impact of these technologies on grid performance. This paper investigates the impact of integrating residential rooftop photovoltaic (PV) systems and battery energy storage systems (BESSs) into low-voltage (LV) distribution networks. A stochastic approach, using the Monte Carlo method, is applied to randomly place PV systems across the network, generating multiple scenarios for power flow simulations in MATLAB Simulink R2024b. The method incorporates real-world consumer load data and grid topology, representing a novel approach in simulating distribution network behaviour accurately. The novelty of this paper lies in its ability to combine stochastic PV placement with real-world load data, providing a more realistic representation of network conditions. The simulation results revealed that widespread PV deployment can lead to overvoltage issues, but the integration of BESSs alongside PV systems mitigates these problems significantly. The findings of this paper offer valuable insights for Distribution Network Operators, aiding in the development of strategies for optimal PV and BESS integration to enhance grid performance.

Suggested Citation

  • Eva Simonič & Sebastijan Seme & Klemen Sredenšek, 2025. "Research on the Modelling and Analysis of the Penetration of Renewable Sources and Storage into Electrical Networks," Energies, MDPI, vol. 18(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2263-:d:1645435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gupta, Rahul & Sossan, Fabrizio & Paolone, Mario, 2021. "Countrywide PV hosting capacity and energy storage requirements for distribution networks: The case of Switzerland," Applied Energy, Elsevier, vol. 281(C).
    2. Moshövel, Janina & Kairies, Kai-Philipp & Magnor, Dirk & Leuthold, Matthias & Bost, Mark & Gährs, Swantje & Szczechowicz, Eva & Cramer, Moritz & Sauer, Dirk Uwe, 2015. "Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption," Applied Energy, Elsevier, vol. 137(C), pages 567-575.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    2. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    3. Jamal, Taskin & Carter, Craig & Schmidt, Thomas & Shafiullah, G.M. & Calais, Martina & Urmee, Tania, 2019. "An energy flow simulation tool for incorporating short-term PV forecasting in a diesel-PV-battery off-grid power supply system," Applied Energy, Elsevier, vol. 254(C).
    4. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    5. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    6. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    7. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    8. Burger, Scott P. & Luke, Max, 2017. "Business models for distributed energy resources: A review and empirical analysis," Energy Policy, Elsevier, vol. 109(C), pages 230-248.
    9. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    10. Parra, David & Patel, Martin K., 2016. "Effect of tariffs on the performance and economic benefits of PV-coupled battery systems," Applied Energy, Elsevier, vol. 164(C), pages 175-187.
    11. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    12. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    13. DiOrio, Nicholas & Denholm, Paul & Hobbs, William B., 2020. "A model for evaluating the configuration and dispatch of PV plus battery power plants," Applied Energy, Elsevier, vol. 262(C).
    14. Brian Azzopardi & Yesbol Gabdullin, 2024. "Assessing Combined High Photovoltaic and Electric Vehicle Charging Penetration in Low-Voltage Distribution Networks: A Case Study in Malta," Energies, MDPI, vol. 17(1), pages 1-22, January.
    15. Hirschburger, Rafael & Weidlich, Anke, 2020. "Profitability of photovoltaic and battery systems on municipal buildings," Renewable Energy, Elsevier, vol. 153(C), pages 1163-1173.
    16. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    17. Zheng, Menglian & Wang, Xinhao & Meinrenken, Christoph J. & Ding, Yi, 2018. "Economic and environmental benefits of coordinating dispatch among distributed electricity storage," Applied Energy, Elsevier, vol. 210(C), pages 842-855.
    18. Reimuth, Andrea & Locherer, Veronika & Danner, Martin & Mauser, Wolfram, 2020. "How do changes in climate and consumption loads affect residential PV coupled battery energy systems?," Energy, Elsevier, vol. 198(C).
    19. Nomaguchi, Yutaka & Tanaka, Hiroki & Sakakibara, Akiyuki & Fujita, Kikuo & Kishita, Yusuke & Hara, Keishiro & Uwasu, Michinori, 2017. "Integrated planning of low-voltage power grids and subsidies toward a distributed generation system – Case study of the diffusion of photovoltaics in a Japanese dormitory town," Energy, Elsevier, vol. 140(P1), pages 779-793.
    20. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2263-:d:1645435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.