IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1865-d1629652.html
   My bibliography  Save this article

A Model Predictive Control to Improve Grid Resilience

Author

Listed:
  • Joseph Young

    (OptimoJoe, Houston, TX 77254, USA)

  • David G. Wilson

    (Electrical Sciences, Sandia National Laboratories, Albuquerque, NM 87185, USA)

  • Wayne Weaver

    (Mechanical and Aerospace Engineering, Michigan Technological University, Houghton, MI 49931, USA)

  • Rush D. Robinett

    (Mechanical and Aerospace Engineering, Michigan Technological University, Houghton, MI 49931, USA)

Abstract

The following article details a model predictive control (MPC) to improve grid resilience when faced with variable generation resources. This topic is of significant interest to utility power systems where distributed intermittent energy sources will increase significantly and be relied on for electric grid ancillary services. Previous work on MPCs has focused on narrowly targeted control applications such as improving electric vehicle (EV) charging infrastructure or reducing the cost of integrating Energy Storage Systems (ESSs) into the grid. In contrast, this article develops a comprehensive treatment of the construction of an MPC tailored to electric grids and then applies it integration of intermittent energy resources. To accomplish this, the following article includes a description of a reduced order model (ROM) of an electric power grid based on a circuit model, an optimization formulation that describes the MPC, a collocation method for solving linear time-dependent differential algebraic equations (DAEs) that result from the ROM, and an overall strategy for iteratively refining the behavior of the MPC. Next, the algorithm is validated using two separate numerical experiments. First, the algorithm is compared to an existing MPC code and the results are verified by a numerically precise simulation. It is shown that this algorithm produces a control comparable to existing algorithms and the behavior of the control carefully respects the bounds specified. Second, the MPC is applied to a small nine bus system that contains a mix of turbine-spinning-machine-based and intermittent generation in order to demonstrate the algorithm’s utility for resource planning and control of intermittent resources. This study demonstrates how the MPC can be tuned to change the behavior of the control, which can then assist with the integration of intermittent resources into the grid. The emphasis throughout the paper is to provide systematic treatment of the topic and produce a novel nonlinear control compatible design framework applicable to electric grids and the control of variable resources. This differs from the more targeted application-based focus in most presentations.

Suggested Citation

  • Joseph Young & David G. Wilson & Wayne Weaver & Rush D. Robinett, 2025. "A Model Predictive Control to Improve Grid Resilience," Energies, MDPI, vol. 18(7), pages 1-33, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1865-:d:1629652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ariel Villalón & Marco Rivera & Yamisleydi Salgueiro & Javier Muñoz & Tomislav Dragičević & Frede Blaabjerg, 2020. "Predictive Control for Microgrid Applications: A Review Study," Energies, MDPI, vol. 13(10), pages 1-32, May.
    2. Nor Liza Tumeran & Siti Hajar Yusoff & Teddy Surya Gunawan & Mohd Shahrin Abu Hanifah & Suriza Ahmad Zabidi & Bernardi Pranggono & Muhammad Sharir Fathullah Mohd Yunus & Siti Nadiah Mohd Sapihie & Asm, 2023. "Model Predictive Control Based Energy Management System Literature Assessment for RES Integration," Energies, MDPI, vol. 16(8), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    2. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    3. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    4. Xuhong Yang & Hui Li & Wei Jia & Zhongxin Liu & Yu Pan & Fengwei Qian, 2022. "Adaptive Virtual Synchronous Generator Based on Model Predictive Control with Improved Frequency Stability," Energies, MDPI, vol. 15(22), pages 1-13, November.
    5. Luís Caseiro & André Mendes, 2021. "Fault Analysis and Non-Redundant Fault Tolerance in 3-Level Double Conversion UPS Systems Using Finite-Control-Set Model Predictive Control," Energies, MDPI, vol. 14(8), pages 1-39, April.
    6. Nor Liza Tumeran & Siti Hajar Yusoff & Teddy Surya Gunawan & Mohd Shahrin Abu Hanifah & Suriza Ahmad Zabidi & Bernardi Pranggono & Muhammad Sharir Fathullah Mohd Yunus & Siti Nadiah Mohd Sapihie & Asm, 2023. "Model Predictive Control Based Energy Management System Literature Assessment for RES Integration," Energies, MDPI, vol. 16(8), pages 1-27, April.
    7. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    8. Ammar Armghan & Muhammad Kashif Azeem & Hammad Armghan & Ming Yang & Fayadh Alenezi & Mudasser Hassan, 2021. "Dynamical Operation Based Robust Nonlinear Control of DC Microgrid Considering Renewable Energy Integration," Energies, MDPI, vol. 14(13), pages 1-23, July.
    9. Escobar, Eros D. & Betancur, Daniel & Manrique, Tatiana & Isaac, Idi A., 2023. "Model predictive real-time architecture for secondary voltage control of microgrids," Applied Energy, Elsevier, vol. 345(C).
    10. Saqib Iqbal & Kamyar Mehran, 2024. "Data-Driven Management Systems for Wave-Powered Renewable Energy Communities," Energies, MDPI, vol. 17(5), pages 1-19, March.
    11. Saeedreza Jadidi & Hamed Badihi & Youmin Zhang, 2020. "Passive Fault-Tolerant Control Strategies for Power Converter in a Hybrid Microgrid," Energies, MDPI, vol. 13(21), pages 1-28, October.
    12. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    13. Marcel Nicola & Claudiu-Ionel Nicola, 2021. "Fractional-Order Control of Grid-Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers," Energies, MDPI, vol. 14(2), pages 1-25, January.
    14. Ramzi Saidi & Jean-Christophe Olivier & Mohamed Machmoum & Eric Chauveau, 2021. "Cascaded Centered Moving Average Filters for Energy Management in Multisource Power Systems with a Large Number of Devices," Energies, MDPI, vol. 14(12), pages 1-21, June.
    15. Israth Jahan Chowdhury & Siti Hajar Yusoff & Teddy Surya Gunawan & Suriza Ahmad Zabidi & Mohd Shahrin Bin Abu Hanifah & Siti Nadiah Mohd Sapihie & Bernardi Pranggono, 2024. "Analysis of Model Predictive Control-Based Energy Management System Performance to Enhance Energy Transmission," Energies, MDPI, vol. 17(11), pages 1-19, May.
    16. Bingyin Lei & Yue Ren & Huiyu Luan & Ruonan Dong & Xiuyuan Wang & Junli Liao & Shu Fang & Kaiye Gao, 2023. "A Review of Optimization for System Reliability of Microgrid," Mathematics, MDPI, vol. 11(4), pages 1-30, February.
    17. Eros D. Escobar & Tatiana Manrique & Idi A. Isaac, 2022. "Campus Microgrid Data-Driven Model Identification and Secondary Voltage Control," Energies, MDPI, vol. 15(21), pages 1-19, October.
    18. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of the Control of a Grid Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(7), pages 1-32, March.
    19. Juan Moreno-Castro & Victor Samuel Ocaña Guevara & Lesyani Teresa León Viltre & Yandi Gallego Landera & Oscar Cuaresma Zevallos & Miguel Aybar-Mejía, 2023. "Microgrid Management Strategies for Economic Dispatch of Electricity Using Model Predictive Control Techniques: A Review," Energies, MDPI, vol. 16(16), pages 1-24, August.
    20. Smitha Joyce Pinto & Pierluigi Siano & Mimmo Parente, 2023. "Review of Cybersecurity Analysis in Smart Distribution Systems and Future Directions for Using Unsupervised Learning Methods for Cyber Detection," Energies, MDPI, vol. 16(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1865-:d:1629652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.