IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p510-d483176.html
   My bibliography  Save this article

Fractional-Order Control of Grid-Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers

Author

Listed:
  • Marcel Nicola

    (Research and Development Department, National Institute for Research, Development and Testing in Electrical Engineering—ICMET Craiova, 200746 Craiova, Romania)

  • Claudiu-Ionel Nicola

    (Research and Development Department, National Institute for Research, Development and Testing in Electrical Engineering—ICMET Craiova, 200746 Craiova, Romania
    Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania)

Abstract

Starting with the problem of connecting the photovoltaic (PV) system to the main grid, this article presents the control of a grid-connected PV system using fractional-order (FO) sliding mode control (SMC) and FO-synergetic controllers. The article presents the mathematical model of a PV system connected to the main grid together with the chain of intermediate elements and their control systems. To obtain a control system with superior performance, the robustness and superior performance of an SMC-type controller for the control of the u dc voltage in the DC intermediate circuit are combined with the advantages provided by the flexibility of using synergetic control for the control of currents i d and i q . In addition, these control techniques are suitable for the control of nonlinear systems, and it is not necessary to linearize the controlled system around a static operating point; thus, the control system achieved is robust to parametric variations and provides the required static and dynamic performance. Further, by approaching the synthesis of these controllers using the fractional calculus for integration operators and differentiation operators, this article proposes a control system based on an FO-SMC controller combined with FO-synergetic controllers. The validation of the synthesis of the proposed control system is achieved through numerical simulations performed in Matlab/Simulink and by comparing it with a benchmark for the control of a grid-connected PV system implemented in Matlab/Simulink. Superior results of the proposed control system are obtained compared to other types of control algorithms.

Suggested Citation

  • Marcel Nicola & Claudiu-Ionel Nicola, 2021. "Fractional-Order Control of Grid-Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers," Energies, MDPI, vol. 14(2), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:510-:d:483176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdollah Younesi & Hossein Shayeghi & Pierluigi Siano, 2020. "Assessing the Use of Reinforcement Learning for Integrated Voltage/Frequency Control in AC Microgrids," Energies, MDPI, vol. 13(5), pages 1-22, March.
    2. Thiago Tricarico & Gustavo Gontijo & Marcello Neves & Matheus Soares & Mauricio Aredes & Josep M. Guerrero, 2019. "Control Design, Stability Analysis and Experimental Validation of New Application of an Interleaved Converter Operating as a Power Interface in Hybrid Microgrids," Energies, MDPI, vol. 12(3), pages 1-23, January.
    3. Giovanni Artale & Giuseppe Caravello & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Salvatore Guaiana & Ninh Nguyen Quang & Marco Palmeri & Nicola Panzavecchia & Giovanni Tinè, 2020. "A Virtual Tool for Load Flow Analysis in a Micro-Grid," Energies, MDPI, vol. 13(12), pages 1-26, June.
    4. Michael D. Cook & Eddy H. Trinklein & Gordon G. Parker & Rush D. Robinett & Wayne W. Weaver, 2019. "Optimal and Decentralized Control Strategies for Inverter-Based AC Microgrids," Energies, MDPI, vol. 12(18), pages 1-20, September.
    5. Ariel Villalón & Marco Rivera & Yamisleydi Salgueiro & Javier Muñoz & Tomislav Dragičević & Frede Blaabjerg, 2020. "Predictive Control for Microgrid Applications: A Review Study," Energies, MDPI, vol. 13(10), pages 1-32, May.
    6. Juan Carlos Oviedo Cepeda & German Osma-Pinto & Robin Roche & Cesar Duarte & Javier Solano & Daniel Hissel, 2020. "Design of a Methodology to Evaluate the Impact of Demand-Side Management in the Planning of Isolated/Islanded Microgrids," Energies, MDPI, vol. 13(13), pages 1-24, July.
    7. Lei Song & Lijun Huang & Bo Long & Fusheng Li, 2020. "A Genetic-Algorithm-Based DC Current Minimization Scheme for Transformless Grid-Connected Photovoltaic Inverters," Energies, MDPI, vol. 13(3), pages 1-18, February.
    8. Michael Stadler & Zack Pecenak & Patrick Mathiesen & Kelsey Fahy & Jan Kleissl, 2020. "Performance Comparison between Two Established Microgrid Planning MILP Methodologies Tested On 13 Microgrid Projects," Energies, MDPI, vol. 13(17), pages 1-24, August.
    9. Haochen Hua & Yuchao Qin & Hanxuan Xu & Chuantong Hao & Junwei Cao, 2019. "Robust Control Method for DC Microgrids and Energy Routers to Improve Voltage Stability in Energy Internet," Energies, MDPI, vol. 12(9), pages 1-17, April.
    10. Xiangwu Yan & Yang Cui & Sen Cui, 2019. "Control Method of Parallel Inverters with Self-Synchronizing Characteristics in Distributed Microgrid," Energies, MDPI, vol. 12(20), pages 1-20, October.
    11. Adyr A. Estévez-Bén & Alfredo Alvarez-Diazcomas & Juvenal Rodríguez-Reséndiz, 2020. "Transformerless Multilevel Voltage-Source Inverter Topology Comparative Study for PV Systems," Energies, MDPI, vol. 13(12), pages 1-26, June.
    12. Boning Wu & Xuesong Zhou & Youjie Ma, 2020. "Bus Voltage Control of DC Distribution Network Based on Sliding Mode Active Disturbance Rejection Control Strategy," Energies, MDPI, vol. 13(6), pages 1-21, March.
    13. Kamil Khan & Ahmad Kamal & Abdul Basit & Tanvir Ahmad & Haider Ali & Anwar Ali, 2019. "Economic Load Dispatch of a Grid-Tied DC Microgrid Using the Interior Search Algorithm," Energies, MDPI, vol. 12(4), pages 1-13, February.
    14. Tariq Kamal & Murat Karabacak & Vedran S. Perić & Syed Zulqadar Hassan & Luis M. Fernández-Ramírez, 2020. "Novel Improved Adaptive Neuro-Fuzzy Control of Inverter and Supervisory Energy Management System of a Microgrid," Energies, MDPI, vol. 13(18), pages 1-22, September.
    15. Marino Coppola & Pierluigi Guerriero & Adolfo Dannier & Santolo Daliento & Davide Lauria & Andrea Del Pizzo, 2020. "Control of a Fault-Tolerant Photovoltaic Energy Converter in Island Operation," Energies, MDPI, vol. 13(12), pages 1-18, June.
    16. Jaber Alshehri & Muhammad Khalid & Ahmed Alzahrani, 2019. "An Intelligent Battery Energy Storage-Based Controller for Power Quality Improvement in Microgrids," Energies, MDPI, vol. 12(11), pages 1-21, June.
    17. Fei Zhao & Jinsha Yuan & Ning Wang & Zhang Zhang & Helong Wen, 2019. "Secure Load Frequency Control of Smart Grids under Deception Attack: A Piecewise Delay Approach," Energies, MDPI, vol. 12(12), pages 1-15, June.
    18. Oscar Danilo Montoya & Walter Gil-González & Edwin Rivas-Trujillo, 2020. "Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids," Energies, MDPI, vol. 13(9), pages 1-20, May.
    19. Yuichiro Yoshida & Hooman Farzaneh, 2020. "Optimal Design of a Stand-Alone Residential Hybrid Microgrid System for Enhancing Renewable Energy Deployment in Japan," Energies, MDPI, vol. 13(7), pages 1-18, April.
    20. Kishan Veerashekar & Halil Askan & Matthias Luther, 2020. "Qualitative and Quantitative Transient Stability Assessment of Stand-Alone Hybrid Microgrids in a Cluster Environment," Energies, MDPI, vol. 13(5), pages 1-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(6), pages 1-30, March.
    2. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of the Control of a Grid Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(7), pages 1-32, March.
    3. Adolfo Dannier & Gianluca Brando & Marino Coppola, 2022. "Special Issue on Power Converter of Electric Machines, Renewable Energy Systems, and Transportation," Energies, MDPI, vol. 15(3), pages 1-3, January.
    4. Yashar Mousavi & Geraint Bevan & Ibrahim Beklan Küçükdemiral & Afef Fekih, 2021. "Maximum Power Extraction from Wind Turbines Using a Fault-Tolerant Fractional-Order Nonsingular Terminal Sliding Mode Controller," Energies, MDPI, vol. 14(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of the Control of a Grid Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(7), pages 1-32, March.
    2. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    3. Adolfo Dannier & Gianluca Brando & Marino Coppola, 2022. "Special Issue on Power Converter of Electric Machines, Renewable Energy Systems, and Transportation," Energies, MDPI, vol. 15(3), pages 1-3, January.
    4. Taofeek Afolabi & Hooman Farzaneh, 2023. "Optimal Design and Operation of an Off-Grid Hybrid Renewable Energy System in Nigeria’s Rural Residential Area, Using Fuzzy Logic and Optimization Techniques," Sustainability, MDPI, vol. 15(4), pages 1-33, February.
    5. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    6. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    7. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    8. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    9. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    10. Luís Caseiro & André Mendes, 2021. "Fault Analysis and Non-Redundant Fault Tolerance in 3-Level Double Conversion UPS Systems Using Finite-Control-Set Model Predictive Control," Energies, MDPI, vol. 14(8), pages 1-39, April.
    11. Igyso Zafeiratou & Ionela Prodan & Laurent Lefévre, 2021. "A Hierarchical Control Approach for Power Loss Minimization and Optimal Power Flow within a Meshed DC Microgrid," Energies, MDPI, vol. 14(16), pages 1-27, August.
    12. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    13. Nor Liza Tumeran & Siti Hajar Yusoff & Teddy Surya Gunawan & Mohd Shahrin Abu Hanifah & Suriza Ahmad Zabidi & Bernardi Pranggono & Muhammad Sharir Fathullah Mohd Yunus & Siti Nadiah Mohd Sapihie & Asm, 2023. "Model Predictive Control Based Energy Management System Literature Assessment for RES Integration," Energies, MDPI, vol. 16(8), pages 1-27, April.
    14. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    15. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    16. Ahmed Alzahrani & Hussain Alharthi & Muhammad Khalid, 2019. "Minimization of Power Losses through Optimal Battery Placement in a Distributed Network with High Penetration of Photovoltaics," Energies, MDPI, vol. 13(1), pages 1-16, December.
    17. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel Angel Rodriguez-Cabal & Javier Alveiro Rosero, 2022. "Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study," Sustainability, MDPI, vol. 14(23), pages 1-35, December.
    18. Christoph Wenge & Robert Pietracho & Stephan Balischewski & Bartlomiej Arendarski & Pio Lombardi & Przemyslaw Komarnicki & Leszek Kasprzyk, 2020. "Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience," Energies, MDPI, vol. 13(18), pages 1-18, September.
    19. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    20. Ammar Armghan & Muhammad Kashif Azeem & Hammad Armghan & Ming Yang & Fayadh Alenezi & Mudasser Hassan, 2021. "Dynamical Operation Based Robust Nonlinear Control of DC Microgrid Considering Renewable Energy Integration," Energies, MDPI, vol. 14(13), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:510-:d:483176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.