IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2266-d239557.html
   My bibliography  Save this article

Secure Load Frequency Control of Smart Grids under Deception Attack: A Piecewise Delay Approach

Author

Listed:
  • Fei Zhao

    (School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China)

  • Jinsha Yuan

    (School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China)

  • Ning Wang

    (School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China)

  • Zhang Zhang

    (State Grid Hebei Economic Research Institute, Shijiazhuang 050021, China)

  • Helong Wen

    (State Grid Handan Fengfeng Kuangqu Power Supply Company, Handan 056200, China)

Abstract

The problem of secure load frequency control of smart grids is investigated in this paper. The networked data transmission within the smart grid is corrupted by stochastic deception attacks. First, a unified Load frequency control model is constructed to account for both network-induced effects and deception attacks. Second, with the Lyapunov functional method, a piecewise delay analysis is conducted to study the stability of the established model, which is of less conservativeness. Third, based on the stability analysis, a controller design method is provided in terms of linear matrix inequalities. Finally, a case study is carried out to demonstrate the derived results.

Suggested Citation

  • Fei Zhao & Jinsha Yuan & Ning Wang & Zhang Zhang & Helong Wen, 2019. "Secure Load Frequency Control of Smart Grids under Deception Attack: A Piecewise Delay Approach," Energies, MDPI, vol. 12(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2266-:d:239557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Komboigo Charles & Naomitsu Urasaki & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Lei Liu, 2018. "Robust Load Frequency Control Schemes in Power System Using Optimized PID and Model Predictive Controllers," Energies, MDPI, vol. 11(11), pages 1-18, November.
    2. Athanasios Dagoumas, 2019. "Assessing the Impact of Cybersecurity Attacks on Power Systems," Energies, MDPI, vol. 12(4), pages 1-23, February.
    3. Jun Yang & Zhili Zeng & Yufei Tang & Jun Yan & Haibo He & Yunliang Wu, 2015. "Load Frequency Control in Isolated Micro-Grids with Electrical Vehicles Based on Multivariable Generalized Predictive Theory," Energies, MDPI, vol. 8(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wadi, Mohammed & Shobole, Abdulfetah & Elmasry, Wisam & Kucuk, Ismail, 2024. "Load frequency control in smart grids: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of the Control of a Grid Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(7), pages 1-32, March.
    3. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    4. Yixuan Ge & Guobao Liu & Guishu Zhao & Huai Liu & Ji Sun, 2022. "Observer-Based H ∞ Load Frequency Control for Networked Power Systems with Limited Communications and Probabilistic Cyber Attacks," Energies, MDPI, vol. 15(12), pages 1-16, June.
    5. Marcel Nicola & Claudiu-Ionel Nicola, 2021. "Fractional-Order Control of Grid-Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers," Energies, MDPI, vol. 14(2), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peixiao Fan & Jia Hu & Song Ke & Yuxin Wen & Shaobo Yang & Jun Yang, 2022. "A Frequency–Pressure Cooperative Control Strategy of Multi-Microgrid with an Electric–Gas System Based on MADDPG," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    2. Xin Wang & Jun Yang & Lei Chen & Jifeng He, 2017. "Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet," Energies, MDPI, vol. 10(2), pages 1-20, February.
    3. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    4. Martin Onyeka Okoye & Junyou Yang & Zhenjiang Lei & Jingwei Yuan & Huichao Ji & Haixin Wang & Jiawei Feng & Tunmise Ayode Otitoju & Weidong Li, 2020. "Predictive Reliability Assessment of Generation System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    5. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    6. Jiandong Yang & Mingjiang Wang & Chao Wang & Wencheng Guo, 2015. "Linear Modeling and Regulation Quality Analysis for Hydro-Turbine Governing System with an Open Tailrace Channel," Energies, MDPI, vol. 8(10), pages 1-16, October.
    7. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Hidehito Matayoshi, 2017. "A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique," Energies, MDPI, vol. 10(8), pages 1-25, July.
    8. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    9. Shitao Ruan, 2023. "Robust Fractional-Order Proportional-Integral Controller Tuning for Load Frequency Control of a Microgrid System with Communication Delay," Energies, MDPI, vol. 16(14), pages 1-17, July.
    10. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
    11. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2017. "Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid," Energies, MDPI, vol. 10(4), pages 1-17, March.
    12. Hina Maqbool & Adnan Yousaf & Rao Muhammad Asif & Ateeq Ur Rehman & Elsayed Tag Eldin & Muhammad Shafiq & Habib Hamam, 2022. "An Optimized Fuzzy Based Control Solution for Frequency Oscillation Reduction in Electric Grids," Energies, MDPI, vol. 15(19), pages 1-21, September.
    13. Yuxin Wen & Peixiao Fan & Jia Hu & Song Ke & Fuzhang Wu & Xu Zhu, 2022. "An Optimal Scheduling Strategy of a Microgrid with V2G Based on Deep Q-Learning," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    14. Komboigo Charles & Naomitsu Urasaki & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Lei Liu, 2018. "Robust Load Frequency Control Schemes in Power System Using Optimized PID and Model Predictive Controllers," Energies, MDPI, vol. 11(11), pages 1-18, November.
    15. Neofytos Neofytou & Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2019. "Modeling Vehicles to Grid as a Source of Distributed Frequency Regulation in Isolated Grids with Significant RES Penetration," Energies, MDPI, vol. 12(4), pages 1-23, February.
    16. Khokhar, Bhuvnesh & Parmar, K. P. Singh, 2022. "A novel adaptive intelligent MPC scheme for frequency stabilization of a microgrid considering SoC control of EVs," Applied Energy, Elsevier, vol. 309(C).
    17. Min-Rong Chen & Guo-Qiang Zeng & Yu-Xing Dai & Kang-Di Lu & Da-Qiang Bi, 2018. "Fractional-Order Model Predictive Frequency Control of an Islanded Microgrid," Energies, MDPI, vol. 12(1), pages 1-21, December.
    18. Sudhanshu Ranjan & D. C. Das & A. Latif & N. Sinha, 2021. "Electric vehicles to renewable-three unequal areas-hybrid microgrid to contain system frequency using mine blast algorithm based control strategy," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 961-975, October.
    19. Jun Deng & Jun Suo & Jing Yang & Shutao Peng & Fangde Chi & Tong Wang, 2019. "Adaptive Damping Control Strategy of Wind Integrated Power System," Energies, MDPI, vol. 12(1), pages 1-18, January.
    20. Wadi, Mohammed & Shobole, Abdulfetah & Elmasry, Wisam & Kucuk, Ismail, 2024. "Load frequency control in smart grids: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2266-:d:239557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.