IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1820-d1627902.html
   My bibliography  Save this article

Applicability of a Heat Recovery Ventilator Retrofit in a Vancouver Residential House

Author

Listed:
  • Bo Li

    (Building Science Centre of Excellence, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC V5G 3H2, Canada)

  • Wei Yue

    (Building Science Centre of Excellence, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC V5G 3H2, Canada)

  • Fitsum Tariku

    (Building Science Centre of Excellence, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC V5G 3H2, Canada)

Abstract

Heat recovery systems are increasingly recognized as key energy conservation measures in residential buildings. But their effectiveness is highly sensitive to operational conditions. This study used a calibrated OpenStudio simulation, which is validated against monthly utility data, to investigate the feasibility of implementing a heat recovery ventilator in an existing single-detached house in Vancouver under two scenarios: existing passive ventilation without a heat recovery ventilator versus the proposed balanced mechanical ventilation with a heat recovery ventilator. The findings indicate that employing an HRV in an existing house lacking balanced ventilation would lead to higher annual space heating energy consumption (75.49 GJ electricity and 56.70 GJ natural gas with HRV compared to 73.64 GJ and 52.70 GJ, respectively, without an HRV). Therefore, for existing houses without balanced ventilation, improving the existing building envelope’s airtightness through retrofits should always be carried out before installing a heat recovery ventilator. Additionally, the heat recovery ventilator should be appropriately sized to compensate for any shortfall in natural infiltration to ensure the sufficient indoor air quality while minimizing the outdoor air-induced space heating energy usage. Furthermore, the recommended break-even point of the infiltration rate for the house studied in this work to avoid increased space heating energy use due to the retrofit with a heat recovery ventilator is 0.281 air change per hour.

Suggested Citation

  • Bo Li & Wei Yue & Fitsum Tariku, 2025. "Applicability of a Heat Recovery Ventilator Retrofit in a Vancouver Residential House," Energies, MDPI, vol. 18(7), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1820-:d:1627902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omer, Abdeen Mustafa, 2008. "Renewable building energy systems and passive human comfort solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1562-1587, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
    2. Cheng-Yih Hong & Hsiu-Ching Chang, 2019. "Comparing the Impact of Wind Power and Solar Power Investment on Industrial Development: Application of Dynamic Energy Industry-related Models," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 38-44.
    3. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    4. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    5. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    6. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    7. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    8. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    9. Kalavala Shivaprakash Srivishnu & Prasutha Rani Markapudi & Senthilarasu Sundaram & Lingamallu Giribabu, 2023. "Semitransparent Perovskite Solar Cells for Building Integrated Photovoltaics: Recent Advances," Energies, MDPI, vol. 16(2), pages 1-25, January.
    10. Aminhossein Jahanbin & Giovanni Semprini, 2020. "Numerical Study on Indoor Environmental Quality in a Room Equipped with a Combined HRV and Radiator System," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    11. Yaoning Yang & Xinping Wang & Shuqi Luo & Yongqiang Wang & Xun Wen & Na Ni & Ling Wang & Wei Jiang & Jixiang Cai & Genyu Xu & Junfeng Yin & Baojie He & Wei Xue, 2025. "Study on the Impact of Courtyard Proportions in Kunming’s Vernacular One-Seal Dwellings (Yikeyin) on Architectural Climatic Adaptability," Sustainability, MDPI, vol. 17(7), pages 1-44, March.
    12. Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
    13. Emily Grubert, 2023. "Yellow, red, and brown energy: leveraging water footprinting concepts for decarbonizing energy systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7239-7260, July.
    14. Filippín, C. & Flores Larsen, S., 2012. "Summer thermal behaviour of compact single family housing in a temperate climate in Argentina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3439-3455.
    15. Uniyal, Sachin & Lodhi, Mahendra Singh & Pawar, Yogita & Thakral, Shreyasee & Garg, Purushottam Kumar & Mukherjee, Sandipan & Nautiyal, Sunil, 2024. "Passive solar heated buildings for enhancing sustainability in the Indian Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    16. Barone, G. & Vassiliades, C. & Elia, C. & Savvides, A. & Kalogirou, S., 2023. "Design optimization of a solar system integrated double-skin façade for a clustered housing unit," Renewable Energy, Elsevier, vol. 215(C).
    17. Aitana Sáez-de-Guinoa & David Zambrana-Vasquez & Víctor Fernández & Carmen Bartolomé, 2022. "Circular Economy in the European Construction Sector: A Review of Strategies for Implementation in Building Renovation," Energies, MDPI, vol. 15(13), pages 1-27, June.
    18. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    19. Zhou, Kai & Leng, Jia-Wei, 2023. "State-of-the-art research of performance-driven architectural design for low-carbon urban underground space: Systematic review and proposed design strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    20. Georgios Martinopoulos & Anna Serasidou & Panagiota Antoniadou & Agis M. Papadopoulos, 2018. "Building Integrated Shading and Building Applied Photovoltaic System Assessment in the Energy Performance and Thermal Comfort of Office Buildings," Sustainability, MDPI, vol. 10(12), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1820-:d:1627902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.