IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1804-d1627384.html
   My bibliography  Save this article

Sustainable Hydrogen Production with Negative Carbon Emission Through Thermochemical Conversion of Biogas/Biomethane

Author

Listed:
  • Bin Wang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    These authors contributed equally to this work.)

  • Yu Shao

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Lingzhi Yang

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Ke Guo

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China)

  • Xiao Li

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Mengzhu Sun

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yong Hao

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Biogas (primarily biomethane), as a carbon-neutral renewable energy source, holds great potential to replace fossil fuels for sustainable hydrogen production. Conventional biogas reforming systems adopt strategies similar to industrial natural gas reforming, posing challenges such as high temperatures, high energy consumption, and high system complexity. In this study, we propose a novel multi-product sequential separation-enhanced reforming method for biogas-derived hydrogen production, which achieves high H 2 yield and CO 2 capture under mid-temperature conditions. The effects of reaction temperature, steam-to-methane ratio, and CO 2 /CH 4 molar ratio on key performance metrics including biomethane conversion and hydrogen production are investigated. At a moderate reforming temperature of 425 °C and pressure of 0.1 MPa, the conversion rate of CH 4 in biogas reaches 97.1%, the high-purity hydrogen production attains 2.15 mol-H 2 /mol-feed, and the hydrogen yield is 90.1%. Additionally, the first-law energy conversion efficiency from biogas to hydrogen reaches 65.6%, which is 11 percentage points higher than that of conventional biogas reforming methods. The yield of captured CO 2 reaches 1.88 kg-CO 2 /m 3 -feed, effectively achieving near-complete recovery of green CO 2 from biogas. The mild reaction conditions allow for a flexible integration with industrial waste heat or a wide selection of other renewable energy sources (e.g., solar heat), facilitating distributed and carbon-negative hydrogen production.

Suggested Citation

  • Bin Wang & Yu Shao & Lingzhi Yang & Ke Guo & Xiao Li & Mengzhu Sun & Yong Hao, 2025. "Sustainable Hydrogen Production with Negative Carbon Emission Through Thermochemical Conversion of Biogas/Biomethane," Energies, MDPI, vol. 18(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1804-:d:1627384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Capa, A. & García, R. & Chen, D. & Rubiera, F. & Pevida, C. & Gil, M.V., 2020. "On the effect of biogas composition on the H2 production by sorption enhanced steam reforming (SESR)," Renewable Energy, Elsevier, vol. 160(C), pages 575-583.
    2. Dang, Chengxiong & Xia, Huanhuan & Yuan, Shuting & Wei, Xingchuan & Cai, Weiquan, 2022. "Green hydrogen production from sorption-enhanced steam reforming of biogas over a Pd/Ni–CaO-mayenite multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 314-322.
    3. García, R. & Gil, M.V. & Rubiera, F. & Chen, D. & Pevida, C., 2021. "Renewable hydrogen production from biogas by sorption enhanced steam reforming (SESR): A parametric study," Energy, Elsevier, vol. 218(C).
    4. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. van den Broek, Machteld & Berghout, Niels & Rubin, Edward S., 2015. "The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1296-1322.
    6. Pashchenko, Dmitry & Makarov, Ivan, 2021. "Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis," Energy, Elsevier, vol. 222(C).
    7. Piotr Bórawski & Aneta Bełdycka-Bórawska & Zuzana Kapsdorferová & Tomasz Rokicki & Andrzej Parzonko & Lisa Holden, 2024. "Perspectives of Electricity Production from Biogas in the European Union," Energies, MDPI, vol. 17(5), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wei-Wei & Tang, Xin-Yuan & Ma, Xu & Li, Jia-Chen & Xu, Chao & He, Ya-Ling, 2023. "Rapid prediction, optimization and design of solar membrane reactor by data-driven surrogate model," Energy, Elsevier, vol. 285(C).
    2. Dang, Chengxiong & Xia, Huanhuan & Yuan, Shuting & Wei, Xingchuan & Cai, Weiquan, 2022. "Green hydrogen production from sorption-enhanced steam reforming of biogas over a Pd/Ni–CaO-mayenite multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 314-322.
    3. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Georgiadis, Amvrosios G. & Tsiotsias, Anastasios I. & Siakavelas, George I. & Charisiou, Nikolaos D. & Ehrhardt, Benedikt & Wang, Wen & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & Mascott, 2024. "An experimental and theoretical approach for the biogas dry reforming reaction using perovskite-derived La0.8X0.2NiO3-δ catalysts (X = Sm, Pr, Ce)," Renewable Energy, Elsevier, vol. 227(C).
    5. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    7. Mou, Xiaofeng & Zhou, Wei & Bao, Zewei & Huang, Weixing, 2024. "Effective thermal conductivity of LaNi5 powder beds for hydrogen storage: Measurement and theoretical analysis," Renewable Energy, Elsevier, vol. 231(C).
    8. Gai, Wei-Zhuo & Wang, Le-Yao & Lu, Meng-Yao & Deng, Zhen-Yan, 2023. "Effect of low concentration hydroxides on Al hydrolysis for hydrogen production," Energy, Elsevier, vol. 268(C).
    9. Ari, Izzet & Yikmaz, Riza Fikret, 2019. "The role of renewable energy in achieving Turkey's INDC," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 244-251.
    10. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    11. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    12. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    14. A.M. Shakorfow & A.H. Mohamed, 2024. "Cogeneration Via Solid Oxide Fuel Cells," Acta Chemica Malaysia (ACMY), Zibeline International Publishing, vol. 8(2), pages 97-106, August.
    15. Marcella Calabrese & Maria Portarapillo & Alessandra Di Nardo & Virginia Venezia & Maria Turco & Giuseppina Luciani & Almerinda Di Benedetto, 2024. "Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment," Energies, MDPI, vol. 17(6), pages 1-26, March.
    16. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    17. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    18. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    19. Lidia Gawlik & Eugeniusz Mokrzycki, 2021. "Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen," Energies, MDPI, vol. 14(19), pages 1-15, October.
    20. Banasiak, David & Kienberger, Thomas, 2024. "A comparative analysis of the economic feasibility of reversible hydrogen systems based on time-resolved operation optimisation," Applied Energy, Elsevier, vol. 371(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1804-:d:1627384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.