AI-Driven Predictive Control for Dynamic Energy Optimization in Flying Cars
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shang, Yitong & Li, Duo & Li, Yang & Li, Sen, 2025. "Explainable spatiotemporal multi-task learning for electric vehicle charging demand prediction," Applied Energy, Elsevier, vol. 384(C).
- Yang, Chao & Lu, Zhexi & Wang, Weida & Wang, Muyao & Zhao, Jing, 2023. "An efficient intelligent energy management strategy based on deep reinforcement learning for hybrid electric flying car," Energy, Elsevier, vol. 280(C).
- Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
- Liu, Ming & Hao, Han & Sun, Xin & Qu, Xiaobo & Wang, Kai & Qian, Yuping & Hao, Xu & Xun, Dengye & Geng, Jingxuan & Dou, Hao & Deng, Yunfeng & Du, Shilong & Liu, Zongwei & Zhao, Fuquan, 2024. "Exploring the key technologies needed for the commercialization of electric flying cars: A levelized cost and profitability analysis," Energy, Elsevier, vol. 303(C).
- Khairy Sayed & Ahmed Kassem & Hedra Saleeb & Ali S. Alghamdi & Ahmed G. Abo-Khalil, 2020. "Energy-Saving of Battery Electric Vehicle Powertrain and Efficiency Improvement during Different Standard Driving Cycles," Sustainability, MDPI, vol. 12(24), pages 1-26, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
- Mauro Zucca & Vincenzo Cirimele & Jorge Bruna & Davide Signorino & Erika Laporta & Jacopo Colussi & Miguel Angel Alonso Tejedor & Federico Fissore & Umberto Pogliano, 2021. "Assessment of the Overall Efficiency in WPT Stations for Electric Vehicles," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
- Karla Schröder & Gonzalo Farias & Sebastián Dormido-Canto & Ernesto Fabregas, 2024. "Comparative Analysis of Deep Learning Methods for Fault Avoidance and Predicting Demand in Electrical Distribution," Energies, MDPI, vol. 17(11), pages 1-13, June.
- Joanna Alicja Dyczkowska & Norbert Chamier-Gliszczynski & Waldemar Woźniak & Roman Stryjski, 2024. "Management of the Fuel Supply Chain and Energy Security in Poland," Energies, MDPI, vol. 17(22), pages 1-20, November.
- Cao, Jianing & Han, Yuhang & Pan, Nan & Zhang, Jingcheng & Yang, Junwei, 2024. "A data-driven approach to urban charging facility expansion based on bi-level optimization: A case study in a Chinese city," Energy, Elsevier, vol. 300(C).
- Tung Linh Nguyen & Quynh Anh Nguyen, 2025. "A Multi-Objective PSO-GWO Approach for Smart Grid Reconfiguration with Renewable Energy and Electric Vehicles," Energies, MDPI, vol. 18(8), pages 1-15, April.
- Ayşe Tuğba Yapıcı & Nurettin Abut & Tarık Erfidan, 2025. "Comparing the Effectiveness of Deep Learning Approaches for Charging Time Prediction in Electric Vehicles: Kocaeli Example," Energies, MDPI, vol. 18(8), pages 1-21, April.
- Zhen Chen & Ming-Ting Chen & Shu-Wei Jia, 2025. "Simulation and Optimization of New Energy Vehicles Promotion Policy Strategies Considering Energy Saving, Carbon Reduction, and Consumers’ Willingness Based on System Dynamics," Sustainability, MDPI, vol. 17(7), pages 1-23, March.
- Liao, Peng & Tang, Tie-Qiao & Liu, Ronghui & Huang, Hai-Jun, 2021. "An eco-driving strategy for electric vehicle based on the powertrain," Applied Energy, Elsevier, vol. 302(C).
- Liu, Huanlong & Chen, Guanpeng & Li, Dafa & Wang, Jiawei & Zhou, Jianyi, 2021. "Energy active adjustment and bidirectional transfer management strategy of the electro-hydrostatic hydraulic hybrid powertrain for battery bus," Energy, Elsevier, vol. 230(C).
- Jun Zhang & Huiluan Cong & Hui Zhou & Zhiqiang Wang & Ziyi Wen & Xian Zhang, 2024. "Electric Vehicle Charging Load Prediction Based on Weight Fusion Spatial–Temporal Graph Convolutional Network," Energies, MDPI, vol. 17(19), pages 1-17, September.
- Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
- Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
- Tian, Chenlu & Liu, Yechun & Zhang, Guiqing & Yang, Yalong & Yan, Yi & Li, Chengdong, 2024. "Transfer learning based hybrid model for power demand prediction of large-scale electric vehicles," Energy, Elsevier, vol. 300(C).
- Cao, Tingwei & Xu, Yinliang & Liu, Guowei & Tao, Shengyu & Tang, Wenjun & Sun, Hongbin, 2024. "Feature-enhanced deep learning method for electric vehicle charging demand probabilistic forecasting of charging station," Applied Energy, Elsevier, vol. 371(C).
- Liu, Ming & Hao, Han & Sun, Xin & Qu, Xiaobo & Wang, Kai & Qian, Yuping & Hao, Xu & Xun, Dengye & Geng, Jingxuan & Dou, Hao & Deng, Yunfeng & Du, Shilong & Liu, Zongwei & Zhao, Fuquan, 2024. "Exploring the key technologies needed for the commercialization of electric flying cars: A levelized cost and profitability analysis," Energy, Elsevier, vol. 303(C).
- Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
- Yifeng Liu & Meng Chen & Pingfan Wang & Yingxiang Wang & Feng Li & Hui Hou, 2025. "A Review of Carbon Reduction Pathways and Policy–Market Mechanisms in Integrated Energy Systems in China," Sustainability, MDPI, vol. 17(7), pages 1-25, March.
- Siow Jat Shern & Md Tanjil Sarker & Mohammed Hussein Saleh Mohammed Haram & Gobbi Ramasamy & Siva Priya Thiagarajah & Fahmid Al Farid, 2024. "Artificial Intelligence Optimization for User Prediction and Efficient Energy Distribution in Electric Vehicle Smart Charging Systems," Energies, MDPI, vol. 17(22), pages 1-25, November.
- Kuang, Haoxuan & Qu, Haohao & Deng, Kunxiang & Li, Jun, 2024. "A physics-informed graph learning approach for citywide electric vehicle charging demand prediction and pricing," Applied Energy, Elsevier, vol. 363(C).
More about this item
Keywords
AI-driven energy management; hybrid energy storage systems; energy optimization; system efficiency; renewable energy integration; carbon footprint reduction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1781-:d:1626562. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.