IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1719-d1623720.html
   My bibliography  Save this article

A Review of the Evaluation, Simulation, and Control of the Air Conditioning System in a Nuclear Power Plant

Author

Listed:
  • Seyed Majid Bigonah Ghalehsari

    (Department of Civil Engineering, School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China)

  • Jiaming Wang

    (Department of Civil Engineering, School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China)

  • Tianyi Zhao

    (Department of Civil Engineering, School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

This review paper aims to present a comprehensive overview of the evaluation, simulation, and control of heating, ventilation, and air conditioning (HVAC) systems in nuclear power plants (NPPs), specifically highlighting their importance in maintaining operational safety, thermal performance, and energy efficiency. The study’s authors summarize recent developments in HVAC technologies, such as passive cooling systems, data-driven energy management frameworks, and intelligent control strategies, to cope with the specific challenges of NPPs. Various passive cooling systems, including heat pipes, thermosyphons, and loop heat pipes, have proven themselves by their ability to remove residual heat from spent fuel pools and reactors power plants with high efficiency. Through experimental studies, they have shown their ability to eliminate operational vulnerability to accidents or guarantee any desired long-term cooling. Intelligent sensor networks allow a more data-driven approach to HVAC control, enabling online energy management frameworks and advanced intelligent control systems. These exhibit considerable promise for optimizing HVAC performance, decreasing energy consumption, and improving operational flexibility in multi-zone systems. Such capabilities are ideal for addressing the dynamic and safety-critical nature of NPPs. They are first enabled by the use of these technologies for real-time monitoring, predictive maintenance, and adaptive control. When applied with advanced HVAC control systems, passive cooling techniques provide an exciting route to improve safety and energy efficiency. An overview of the key findings is that robust thermal management solutions combined with intelligent control and intelligent adaptation are essential when addressing the rapidly evolving demands of nuclear energy systems. This work highlights the priorities in the next generation of nuclear power plants, which should actively pursue seamless integration of out-of-system technologies into existing NPP infrastructures, enabling scalable, cost-effective, and resilient solutions.

Suggested Citation

  • Seyed Majid Bigonah Ghalehsari & Jiaming Wang & Tianyi Zhao, 2025. "A Review of the Evaluation, Simulation, and Control of the Air Conditioning System in a Nuclear Power Plant," Energies, MDPI, vol. 18(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1719-:d:1623720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1719/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1719/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Xiaowen & Tian, Wei & Chen, Qingwei & Wei, Guoliang, 2019. "Policies on water resources assessment of coastal nuclear power plants in China," Energy Policy, Elsevier, vol. 128(C), pages 170-178.
    2. Węglarz, Katarzyna & Taler, Dawid & Taler, Jan & Marcinkowski, Mateusz, 2024. "General numerical method for hydraulic and thermal modelling of the steam superheaters," Energy, Elsevier, vol. 291(C).
    3. Ge, Gaoming & Abdel-Salam, Mohamed R.H. & Besant, Robert W. & Simonson, Carey J., 2013. "Research and applications of liquid-to-air membrane energy exchangers in building HVAC systems at University of Saskatchewan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 464-479.
    4. Chen, Dong & Zhang, Wenjie & Du, Xiaoze & Xu, Lei & Wei, Huimin, 2024. "Dynamic optimization method for cleaning cycle of condenser of nuclear power plant," Energy, Elsevier, vol. 294(C).
    5. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2007. "Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process," Energy Policy, Elsevier, vol. 35(8), pages 4027-4038, August.
    6. Ben Qi & Jingang Liang & Jiejuan Tong, 2023. "Fault Diagnosis Techniques for Nuclear Power Plants: A Review from the Artificial Intelligence Perspective," Energies, MDPI, vol. 16(4), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Xiang & Xiaolei Li & Xiao Liao & Wei Cui & Fengkai Liu & Donghe Li, 2025. "Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges," Energies, MDPI, vol. 18(8), pages 1-24, April.
    2. Shen, Suping & Cai, Wenjian & Wang, Xinli & Wu, Qiong & Yon, Haoren, 2017. "Investigation of liquid desiccant regenerator with fixed-plate heat recovery system," Energy, Elsevier, vol. 137(C), pages 172-182.
    3. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    4. Chen, Yung-Sheng & Lee, Cheng-Ting & Wang, Yu-Cheng & Chang, Tsai-Ling & Liu, Ta-Kang, 2024. "Research on the implementation of integrated coastal management principles in Taiwan to mitigate disputes related to nuclear waste disposal," Energy Policy, Elsevier, vol. 195(C).
    5. Cieślik, Tomasz E. & Marcinkowski, Mateusz & Sacharczuk, Jacek & Ziółkowska, Ewelina & Taler, Dawid & Taler, Jan, 2025. "Generalization challenges in optimizing heat transfer predictions in plate fin and tube heat exchangers using artificial neural networks," Energy, Elsevier, vol. 325(C).
    6. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Rafati Nasr, Mohammad & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "A review of frosting in air-to-air energy exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 538-554.
    8. Lydon, G.P. & Hofer, J. & Svetozarevic, B. & Nagy, Z. & Schlueter, A., 2017. "Coupling energy systems with lightweight structures for a net plus energy building," Applied Energy, Elsevier, vol. 189(C), pages 310-326.
    9. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Guohua Fan & Baodeng Hou & Xinsheng Dong & Xiaowen Ding, 2021. "Technical Points of Water-Draw and Discharge Impact Analysis in Guidelines for Water Resource Assessment of Coastal Nuclear Power Plants," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    11. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    12. Shen, Yung-Chi & Lin, Grace T.R. & Li, Kuang-Pin & Yuan, Benjamin J.C., 2010. "An assessment of exploiting renewable energy sources with concerns of policy and technology," Energy Policy, Elsevier, vol. 38(8), pages 4604-4616, August.
    13. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China," Applied Energy, Elsevier, vol. 308(C).
    14. Kontić, Branko & Bohanec, Marko & Kontić, Davor & Trdin, Nejc & Matko, Maruša, 2016. "Improving appraisal of sustainability of energy options – A view from Slovenia," Energy Policy, Elsevier, vol. 90(C), pages 154-171.
    15. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    16. Sicong Wan & Jichong Lei, 2025. "Research on a Small Modular Reactor Fault Diagnosis System Based on the Attention Mechanism," Energies, MDPI, vol. 18(14), pages 1-20, July.
    17. Shih-Cheng Hu & Angus Shiue & Yi-Shiung Chiu & Archy Wang & Jacky Chen, 2016. "Simplified Heat and Mass Transfer Model for Cross-Flow and Countercurrent Flow Packed Bed Tower Dehumidifiers with a Liquid Desiccant System," Sustainability, MDPI, vol. 8(12), pages 1-13, December.
    18. Marcinkowski, Mateusz & Taler, Dawid & Węglarz, Katarzyna & Taler, Jan, 2024. "Advancements in analyzing air-side heat transfer coefficient on the individual tube rows in finned heat exchangers: Comparative study of three CFD methods," Energy, Elsevier, vol. 307(C).
    19. Daim, Tugrul & Cowan, Kelly, 2010. "Assessing renewable energy portfolio futures with multiple perspectives: The case of the northwest US," Technology in Society, Elsevier, vol. 32(4), pages 255-263.
    20. Zhaohui Liu & Enhong Hu & Hua Liu, 2025. "A Fault Diagnosis Framework for Pressurized Water Reactor Nuclear Power Plants Based on an Improved Deep Subdomain Adaptation Network," Energies, MDPI, vol. 18(9), pages 1-23, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1719-:d:1623720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.