IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1561-d1617031.html
   My bibliography  Save this article

Coupling Effects of Microstructure Characteristics on Stress Distribution for Pore-Scale Gas Diffusion Layers

Author

Listed:
  • Yushuai Sun

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
    The authors contribute equally to this work.)

  • Pinliang Du

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
    The authors contribute equally to this work.)

  • Miaoqi Bian

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • He Miao

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

  • Hao Hu

    (Automobile Technology and Service College, Wuhan City Polytechnic, Wuhan 430064, China)

  • Liusheng Xiao

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China)

Abstract

A gas diffusion layer (GDL) is an essential component for the efficient operation of proton exchange membrane fuel cells, requiring stable mechanical strength and uniform stress distribution to achieve higher durability. The various microstructure characteristics of GDLs have coupled and complex effects on mechanical properties, which have not been fully considered in previous studies. In this study, we have combined stochastic reconstruction techniques, explicit dynamics compression simulation, and orthogonal design methods to evaluate and optimize the coupling effects of carbon fiber diameter, porosity, GDL thickness, and fiber orientation coefficient on the mechanical properties of pore-scale GDLs. Finally, mathematical expressions have been developed to predict stress distribution under compression. The results show that the impact of fiber diameter and porosity is greater than that of GDL thickness and fiber orientation coefficient. Average stress and stress uniformity increase with increases in fiber diameter, fiber orientation coefficient, and GDL thickness, but porosity shows an opposite trend. We achieved a remarkable reduction of 292% in optimal average stress and a significant enhancement of 278% in stress uniformity. The mathematical expressions have been validated for accuracy by considering the simultaneous coupled effects of various microstructural characteristics. This work provides valuable engineering tools for enhancing the performance and durability of GDLs and fuel cells.

Suggested Citation

  • Yushuai Sun & Pinliang Du & Miaoqi Bian & He Miao & Hao Hu & Liusheng Xiao, 2025. "Coupling Effects of Microstructure Characteristics on Stress Distribution for Pore-Scale Gas Diffusion Layers," Energies, MDPI, vol. 18(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1561-:d:1617031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Gao & Teng Jin & Xiaoyan Wu & Tong Zhang, 2019. "The Effect of Fiber Orientation on Stochastic Reconstruction and Permeability of a Carbon Paper Gas Diffusion Layer," Energies, MDPI, vol. 12(14), pages 1-13, July.
    2. Xiao, Liusheng & Bian, Miaoqi & Sun, Yushuai & Yuan, Jinliang & Wen, Xiaofei, 2024. "Transport properties evaluation of pore-scale GDLs for PEMFC using orthogonal design method," Applied Energy, Elsevier, vol. 357(C).
    3. Lin, Rui & Diao, Xiaoyu & Ma, Tiancai & Tang, Shenghao & Chen, Liang & Liu, Dengcheng, 2019. "Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design," Applied Energy, Elsevier, vol. 254(C).
    4. Zhang, Qian & Lin, Rui & Técher, Ludovic & Cui, Xin, 2016. "Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution," Energy, Elsevier, vol. 115(P1), pages 550-560.
    5. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Liusheng & Bian, Miaoqi & Sun, Yushuai & Yuan, Jinliang & Wen, Xiaofei, 2024. "Transport properties evaluation of pore-scale GDLs for PEMFC using orthogonal design method," Applied Energy, Elsevier, vol. 357(C).
    2. Zhong, Di & Lin, Rui & Jiang, Zhenghua & Zhu, Yike & Liu, Dengchen & Cai, Xin & Chen, Liang, 2020. "Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations," Applied Energy, Elsevier, vol. 264(C).
    3. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    4. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    5. Tang, Wei & Chang, Guofeng & Xie, Jiaping & Wang, Chao & Shen, Jun & Pan, Xiangmin & Du, Daochang & Liu, Zhaoming & Yuan, Hao & Wei, Xuezhe & Dai, Haifeng, 2024. "A new insight into the in-plane heterogeneity of commercial-sized fuel cells via a novel probability distribution-based method," Applied Energy, Elsevier, vol. 368(C).
    6. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    7. Margherita Bulgarini & Augusto Della Torre & Andrea Baricci & Amedeo Grimaldi & Luca Marocco & Riccardo Mereu & Gianluca Montenegro & Angelo Onorati, 2024. "Computational Fluid Dynamic Investigation of Local Flow-Field Conditions in Lab Polymer Electrolyte Membrane Fuel Cells to Identify Degradation Stressors and Performance Enhancers," Energies, MDPI, vol. 17(15), pages 1-27, July.
    8. Liu, Yuanyuan & Bao, Zhiming & Chen, Jinxing & Lv, Fangming & Jiao, Kui, 2024. "Design of a partially narrowed flow channel with a sub-distribution zone for the water management of large-size proton exchange membrane fuel cells," Energy, Elsevier, vol. 310(C).
    9. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
    10. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
    11. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Akimoto, Yutaro & Shibata, Masumi & Tsuzuki, Yuto & Okajima, Keiichi & Suzuki, Shin-nosuke, 2023. "In-situ on-board evaluation and control of proton exchange membrane fuel cells using magnetic sensors," Applied Energy, Elsevier, vol. 351(C).
    13. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    14. Zhou, Yu & Meng, Kai & Liu, Wei & Chen, Ke & Chen, Wenshang & Zhang, Ning & Chen, Ben, 2024. "Multi-objective optimization of comprehensive performance enhancement for proton exchange membrane fuel cell based on machine learning," Renewable Energy, Elsevier, vol. 232(C).
    15. Indro Biswas & Daniel G. Sánchez & Mathias Schulze & Jens Mitzel & Benjamin Kimmel & Aldo Saul Gago & Pawel Gazdzicki & K. Andreas Friedrich, 2020. "Advancement of Segmented Cell Technology in Low Temperature Hydrogen Technologies," Energies, MDPI, vol. 13(9), pages 1-22, May.
    16. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    17. Kim, Jaeyeon & Kim, Hyeok & Song, Hyeonjun & Kim, Dasol & Kim, Geon Hwi & Im, Dasom & Jeong, Youngjin & Park, Taehyun, 2021. "Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 227(C).
    18. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    19. Tolj, Ivan & Penga, Željko & Vukičević, Damir & Barbir, Frano, 2020. "Thermal management of edge-cooled 1 kW portable proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 257(C).
    20. Cheng, Ming & Luo, Liuxuan & Feng, Yong & Feng, Qilong & Yan, Xiaohui & Shen, Shuiyun & Guo, Yangge & Zhang, Junliang, 2024. "Numerical studies on porous water transport plates applied in PEMFCs under pure oxygen condition," Applied Energy, Elsevier, vol. 362(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1561-:d:1617031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.